コード例 #1
0
ファイル: numeric.py プロジェクト: HarishKSrivsatava/pandas-1
    def __from_arrow__(
        self, array: pyarrow.Array | pyarrow.ChunkedArray
    ) -> BaseMaskedArray:
        """
        Construct IntegerArray/FloatingArray from pyarrow Array/ChunkedArray.
        """
        import pyarrow

        from pandas.core.arrays._arrow_utils import pyarrow_array_to_numpy_and_mask

        array_class = self.construct_array_type()

        pyarrow_type = pyarrow.from_numpy_dtype(self.type)
        if not array.type.equals(pyarrow_type):
            array = array.cast(pyarrow_type)

        if isinstance(array, pyarrow.Array):
            chunks = [array]
        else:
            # pyarrow.ChunkedArray
            chunks = array.chunks

        results = []
        for arr in chunks:
            data, mask = pyarrow_array_to_numpy_and_mask(arr, dtype=self.type)
            num_arr = array_class(data.copy(), ~mask, copy=False)
            results.append(num_arr)

        if len(results) == 1:
            # avoid additional copy in _concat_same_type
            return results[0]
        else:
            return array_class._concat_same_type(results)
コード例 #2
0
    def __from_arrow__(
        self, array: pyarrow.Array | pyarrow.ChunkedArray
    ) -> BaseMaskedArray:
        """
        Construct IntegerArray/FloatingArray from pyarrow Array/ChunkedArray.
        """
        import pyarrow

        from pandas.core.arrays.arrow._arrow_utils import (
            pyarrow_array_to_numpy_and_mask,
        )

        array_class = self.construct_array_type()

        pyarrow_type = pyarrow.from_numpy_dtype(self.type)
        if not array.type.equals(pyarrow_type):
            # test_from_arrow_type_error raise for string, but allow
            #  through itemsize conversion GH#31896
            rt_dtype = pandas_dtype(array.type.to_pandas_dtype())
            if rt_dtype.kind not in ["i", "u", "f"]:
                # Could allow "c" or potentially disallow float<->int conversion,
                #  but at the moment we specifically test that uint<->int works
                raise TypeError(
                    f"Expected array of {self} type, got {array.type} instead"
                )

            array = array.cast(pyarrow_type)

        if isinstance(array, pyarrow.Array):
            chunks = [array]
        else:
            # pyarrow.ChunkedArray
            chunks = array.chunks

        results = []
        for arr in chunks:
            data, mask = pyarrow_array_to_numpy_and_mask(arr, dtype=self.numpy_dtype)
            num_arr = array_class(data.copy(), ~mask, copy=False)
            results.append(num_arr)

        if not results:
            return array_class(
                np.array([], dtype=self.numpy_dtype), np.array([], dtype=np.bool_)
            )
        elif len(results) == 1:
            # avoid additional copy in _concat_same_type
            return results[0]
        else:
            return array_class._concat_same_type(results)