コード例 #1
0
    def _get_coupled_variables_from_potential(self, variables, phi_e_av):
        i_boundary_cc = variables["Current collector current density"]

        param = self.param
        l_n = param.l_n
        l_p = param.l_p
        x_n = pybamm.standard_spatial_vars.x_n
        x_p = pybamm.standard_spatial_vars.x_p

        phi_e_n = pybamm.PrimaryBroadcast(phi_e_av, ["negative electrode"])
        phi_e_s = pybamm.PrimaryBroadcast(phi_e_av, ["separator"])
        phi_e_p = pybamm.PrimaryBroadcast(phi_e_av, ["positive electrode"])
        phi_e = pybamm.Concatenation(phi_e_n, phi_e_s, phi_e_p)

        i_e_n = pybamm.outer(i_boundary_cc, x_n / l_n)
        i_e_s = pybamm.PrimaryBroadcast(i_boundary_cc, ["separator"])
        i_e_p = pybamm.outer(i_boundary_cc, (1 - x_p) / l_p)
        i_e = pybamm.Concatenation(i_e_n, i_e_s, i_e_p)

        variables.update(self._get_standard_potential_variables(phi_e, phi_e_av))
        variables.update(self._get_standard_current_variables(i_e))

        eta_c_av = pybamm.Scalar(0)  # concentration overpotential
        delta_phi_e_av = pybamm.Scalar(0)  # ohmic losses
        variables.update(self._get_split_overpotential(eta_c_av, delta_phi_e_av))

        return variables
コード例 #2
0
    def get_coupled_variables(self, variables):
        param = self.param
        x_n = pybamm.standard_spatial_vars.x_n
        x_p = pybamm.standard_spatial_vars.x_p
        # j_n = variables["Negative electrode interfacial current density"]
        # j_p = variables["Positive electrode interfacial current density"]

        # Volume-averaged velocity
        # v_box_n = param.beta_n * pybamm.IndefiniteIntegral(j_n, x_n)
        # # Shift v_box_p to be equal to 0 at x_p = 1
        # v_box_p = param.beta_p * (
        #     pybamm.IndefiniteIntegral(j_p, x_p) - pybamm.Integral(j_p, x_p)
        # )
        j_n_av = variables[
            "X-averaged negative electrode interfacial current density"]
        j_p_av = variables[
            "X-averaged positive electrode interfacial current density"]

        # Volume-averaged velocity
        v_box_n = param.beta_n * pybamm.outer(j_n_av, x_n)
        v_box_p = param.beta_p * pybamm.outer(j_p_av, x_p - 1)

        v_box_s, dVbox_dz = self._separator_velocity(variables)
        v_box = pybamm.Concatenation(v_box_n, v_box_s, v_box_p)

        variables.update(self._get_standard_velocity_variables(v_box))
        variables.update(
            self._get_standard_vertical_velocity_variables(dVbox_dz))

        return variables
コード例 #3
0
    def test_outer(self):
        # Outer class
        v = pybamm.Vector(np.ones(5), domain="current collector")
        w = pybamm.Vector(2 * np.ones(3), domain="test")
        outer = pybamm.Outer(v, w)
        np.testing.assert_array_equal(outer.evaluate(), 2 * np.ones((15, 1)))
        self.assertEqual(outer.domain, w.domain)
        self.assertEqual(
            str(outer),
            "outer(Column vector of length 5, Column vector of length 3)")

        # outer function
        # if there is no domain clash, normal multiplication is retured
        u = pybamm.Vector(np.linspace(0, 1, 5))
        outer = pybamm.outer(u, v)
        self.assertIsInstance(outer, pybamm.Multiplication)
        np.testing.assert_array_equal(outer.evaluate(), u.evaluate())
        # otherwise, Outer class is returned
        outer_fun = pybamm.outer(v, w)
        outer_class = pybamm.Outer(v, w)
        self.assertEqual(outer_fun.id, outer_class.id)

        # failures
        y = pybamm.StateVector(slice(10))
        with self.assertRaisesRegex(
                TypeError,
                "right child must only contain SpatialVariable and scalars"):
            pybamm.Outer(v, y)
        with self.assertRaises(NotImplementedError):
            outer_fun.diff(None)
コード例 #4
0
    def get_coupled_variables(self, variables):

        param = self.param
        l_n = param.l_n
        l_s = param.l_s
        l_p = param.l_p
        x_s = pybamm.standard_spatial_vars.x_s
        x_p = pybamm.standard_spatial_vars.x_p

        # Unpack
        eps_s_0_av = variables["Leading-order x-averaged separator porosity"]
        eps_p_0_av = variables[
            "Leading-order x-averaged positive electrode porosity"]

        # Diffusivities
        D_ox_s = (eps_s_0_av**param.b_s) * param.curlyD_ox
        D_ox_p = (eps_p_0_av**param.b_p) * param.curlyD_ox

        # Reactions
        sj_ox_p = sum(reaction["Positive"]["s_ox"] *
                      variables["Leading-order x-averaged " +
                                reaction["Positive"]["aj"].lower()]
                      for reaction in self.reactions.values())

        # Fluxes
        N_ox_n_1 = pybamm.FullBroadcast(0, "negative electrode",
                                        "current collector")
        N_ox_s_1 = -pybamm.PrimaryBroadcast(sj_ox_p * l_p, "separator")
        N_ox_p_1 = pybamm.outer(sj_ox_p, x_p - 1)

        # Concentrations
        c_ox_n_1 = pybamm.FullBroadcast(0, "negative electrode",
                                        "current collector")
        c_ox_s_1 = pybamm.outer(sj_ox_p * l_p / D_ox_s, x_s - l_n)
        c_ox_p_1 = pybamm.outer(
            -sj_ox_p / (2 * D_ox_p),
            (x_p - 1)**2 - l_p**2) + pybamm.PrimaryBroadcast(
                sj_ox_p * l_p * l_s / D_ox_s, "positive electrode")

        # Update variables
        c_ox = pybamm.Concatenation(param.C_e * c_ox_n_1, param.C_e * c_ox_s_1,
                                    param.C_e * c_ox_p_1)
        variables.update(self._get_standard_concentration_variables(c_ox))

        N_ox = pybamm.Concatenation(param.C_e * N_ox_n_1, param.C_e * N_ox_s_1,
                                    param.C_e * N_ox_p_1)
        variables.update(self._get_standard_flux_variables(N_ox))

        return variables
コード例 #5
0
    def get_coupled_variables(self, variables):

        eps_0 = variables["Leading-order porosity"]
        c_e_0_av = variables[
            "Leading-order x-averaged electrolyte concentration"]
        c_e = variables["Electrolyte concentration"]
        # i_e = variables["Electrolyte current density"]
        v_box_0 = variables["Leading-order volume-averaged velocity"]
        T_0 = variables["Leading-order cell temperature"]

        param = self.param

        whole_cell = ["negative electrode", "separator", "positive electrode"]
        N_e_diffusion = (-(eps_0**param.b) * pybamm.PrimaryBroadcast(
            param.D_e(c_e_0_av, T_0), whole_cell) * pybamm.grad(c_e))
        # N_e_migration = (param.C_e * param.t_plus) / param.gamma_e * i_e
        # N_e_convection = c_e * v_box_0

        # N_e = N_e_diffusion + N_e_migration + N_e_convection

        if v_box_0.id == pybamm.Scalar(0).id:
            N_e = N_e_diffusion
        else:
            N_e = N_e_diffusion + pybamm.outer(v_box_0, c_e)

        variables.update(self._get_standard_flux_variables(N_e))

        return variables
コード例 #6
0
ファイル: composite_ohm.py プロジェクト: jedgedrudd/PyBaMM
    def get_coupled_variables(self, variables):

        i_boundary_cc_0 = variables[
            "Leading-order current collector current density"]

        # import parameters and spatial variables
        l_n = self.param.l_n
        l_p = self.param.l_p
        x_n = pybamm.standard_spatial_vars.x_n
        x_p = pybamm.standard_spatial_vars.x_p

        eps_0 = variables["Leading-order x-averaged " + self.domain.lower() +
                          " electrode porosity"]
        phi_s_cn = variables["Negative current collector potential"]

        if self._domain == "Negative":
            sigma_eff_0 = self.param.sigma_n * (1 - eps_0)**self.param.b_n
            phi_s = pybamm.PrimaryBroadcast(
                phi_s_cn, "negative electrode") + pybamm.outer(
                    i_boundary_cc_0 / sigma_eff_0,
                    x_n * (x_n - 2 * l_n) / (2 * l_n))
            i_s = pybamm.outer(i_boundary_cc_0, 1 - x_n / l_n)

        elif self.domain == "Positive":
            delta_phi_p_av = variables[
                "X-averaged positive electrode surface potential difference"]
            phi_e_p_av = variables["X-averaged positive electrolyte potential"]

            sigma_eff_0 = self.param.sigma_p * (1 - eps_0)**self.param.b_p

            const = (delta_phi_p_av + phi_e_p_av +
                     (i_boundary_cc_0 / sigma_eff_0) * (1 - l_p / 3))

            phi_s = pybamm.PrimaryBroadcast(
                const, ["positive electrode"]) - pybamm.outer(
                    i_boundary_cc_0 / sigma_eff_0, x_p + (x_p - 1)**2 /
                    (2 * l_p))
            i_s = pybamm.outer(i_boundary_cc_0, 1 - (1 - x_p) / l_p)

        variables.update(self._get_standard_potential_variables(phi_s))
        variables.update(self._get_standard_current_variables(i_s))

        if self.domain == "Positive":
            variables.update(
                self._get_standard_whole_cell_variables(variables))

        return variables
コード例 #7
0
    def get_coupled_variables(self, variables):

        param = self.param
        x_n = pybamm.standard_spatial_vars.x_n
        x_p = pybamm.standard_spatial_vars.x_p

        j_n_av = variables["X-averaged negative electrode interfacial current density"]
        j_p_av = variables["X-averaged positive electrode interfacial current density"]

        # Volume-averaged velocity
        v_box_n = param.beta_n * pybamm.outer(j_n_av, x_n)
        v_box_p = param.beta_p * pybamm.outer(j_p_av, x_p - 1)

        v_box_s, dVbox_dz = self._separator_velocity(variables)
        v_box = pybamm.Concatenation(v_box_n, v_box_s, v_box_p)

        variables.update(self._get_standard_velocity_variables(v_box))
        variables.update(self._get_standard_vertical_velocity_variables(dVbox_dz))

        return variables
コード例 #8
0
    def get_coupled_variables(self, variables):
        """
        Returns variables which are derived from the fundamental variables in the model.
        """
        i_boundary_cc = variables["Current collector current density"]
        phi_s_cn = variables["Negative current collector potential"]

        # import parameters and spatial variables
        l_n = self.param.l_n
        l_p = self.param.l_p
        x_n = pybamm.standard_spatial_vars.x_n
        x_p = pybamm.standard_spatial_vars.x_p

        if self.domain == "Negative":
            phi_s = pybamm.PrimaryBroadcast(phi_s_cn, "negative electrode")
            i_s = pybamm.outer(i_boundary_cc, 1 - x_n / l_n)

        elif self.domain == "Positive":
            # recall delta_phi = phi_s - phi_e
            delta_phi_p_av = variables[
                "X-averaged positive electrode surface potential difference"]
            phi_e_p_av = variables["X-averaged positive electrolyte potential"]

            v = delta_phi_p_av + phi_e_p_av

            phi_s = pybamm.PrimaryBroadcast(v, ["positive electrode"])
            i_s = pybamm.outer(i_boundary_cc, 1 - (1 - x_p) / l_p)

        variables.update(self._get_standard_potential_variables(phi_s))
        variables.update(self._get_standard_current_variables(i_s))

        if self.domain == "Positive":
            variables.update(
                self._get_standard_whole_cell_variables(variables))

        return variables
コード例 #9
0
    def _separator_velocity(self, variables):
        """
        A private method to calculate x- and z-components of velocity in the separator

        Parameters
        ----------
        variables : dict
            Dictionary of variables in the whole model.

        Returns
        -------
        v_box_s : :class:`pybamm.Symbol`
            The x-component of velocity in the separator
        dVbox_dz : :class:`pybamm.Symbol`
            The z-component of velocity in the separator
        """
        # Set up
        param = self.param
        l_n = pybamm.geometric_parameters.l_n
        l_s = pybamm.geometric_parameters.l_s
        x_s = pybamm.standard_spatial_vars.x_s

        # Difference in negative and positive electrode velocities determines the
        # velocity in the separator
        i_boundary_cc = variables["Current collector current density"]
        v_box_n_right = param.beta_n * i_boundary_cc
        v_box_p_left = param.beta_p * i_boundary_cc
        d_vbox_s__dx = (v_box_p_left - v_box_n_right) / l_s

        # Simple formula for velocity in the separator
        dVbox_dz = pybamm.Concatenation(
            pybamm.FullBroadcast(
                0,
                "negative electrode",
                auxiliary_domains={"secondary": "current collector"},
            ),
            pybamm.PrimaryBroadcast(-d_vbox_s__dx, "separator"),
            pybamm.FullBroadcast(
                0,
                "positive electrode",
                auxiliary_domains={"secondary": "current collector"},
            ),
        )
        v_box_s = pybamm.outer(d_vbox_s__dx,
                               (x_s - l_n)) + pybamm.PrimaryBroadcast(
                                   v_box_n_right, "separator")

        return v_box_s, dVbox_dz
コード例 #10
0
    def test_outer(self):
        var = pybamm.Variable("var", ["current collector"])
        x = pybamm.SpatialVariable("x_s", ["separator"])

        # create discretisation
        disc = get_1p1d_discretisation_for_testing()
        mesh = disc.mesh

        # process Outer variable
        disc.set_variable_slices([var])
        outer = pybamm.outer(var, x)
        outer_disc = disc.process_symbol(outer)
        self.assertIsInstance(outer_disc, pybamm.Outer)
        self.assertIsInstance(outer_disc.children[0], pybamm.StateVector)
        self.assertIsInstance(outer_disc.children[1], pybamm.Vector)
        self.assertEqual(
            outer_disc.shape,
            (mesh["separator"][0].npts * mesh["current collector"][0].npts, 1),
        )
コード例 #11
0
    def get_coupled_variables(self, variables):
        # NOTE: the heavy use of Broadcast and outer in this method is mainly so
        # that products are handled correctly when using 1 or 2D current collector
        # models. In standard 1D battery models outer behaves as a normal multiply.
        # In the future, multiply will automatically handle switching between
        # normal multiply and outer products as appropriate.

        c_e_av = self.unpack(variables)

        i_boundary_cc_0 = variables[
            "Leading-order current collector current density"]
        c_e = variables["Electrolyte concentration"]
        delta_phi_n_av = variables[
            "X-averaged negative electrode surface potential difference"]
        phi_s_n_av = variables["X-averaged negative electrode potential"]
        eps_n_av = variables[
            "Leading-order x-averaged negative electrode porosity"]
        eps_s_av = variables["Leading-order x-averaged separator porosity"]
        eps_p_av = variables[
            "Leading-order x-averaged positive electrode porosity"]

        # Note: here we want the average of the temperature over the negative
        # electrode, separator and positive electrode (not including the current
        # collectors)
        T = variables["Cell temperature"]
        T_av = pybamm.x_average(T)

        c_e_n, c_e_s, c_e_p = c_e.orphans

        param = self.param
        l_n = param.l_n
        l_p = param.l_p
        x_n = pybamm.standard_spatial_vars.x_n
        x_s = pybamm.standard_spatial_vars.x_s
        x_p = pybamm.standard_spatial_vars.x_p

        # bulk conductivities
        kappa_n_av = param.kappa_e(c_e_av, T_av) * eps_n_av**param.b_n
        kappa_s_av = param.kappa_e(c_e_av, T_av) * eps_s_av**param.b_s
        kappa_p_av = param.kappa_e(c_e_av, T_av) * eps_p_av**param.b_p

        chi_av = param.chi(c_e_av)
        if chi_av.domain == ["current collector"]:
            chi_av_n = pybamm.PrimaryBroadcast(chi_av, "negative electrode")
            chi_av_s = pybamm.PrimaryBroadcast(chi_av, "separator")
            chi_av_p = pybamm.PrimaryBroadcast(chi_av, "positive electrode")
        else:
            chi_av_n = chi_av
            chi_av_s = chi_av
            chi_av_p = chi_av

        # electrolyte current
        i_e_n = pybamm.outer(i_boundary_cc_0, x_n / l_n)
        i_e_s = pybamm.PrimaryBroadcast(i_boundary_cc_0, "separator")
        i_e_p = pybamm.outer(i_boundary_cc_0, (1 - x_p) / l_p)
        i_e = pybamm.Concatenation(i_e_n, i_e_s, i_e_p)

        # electrolyte potential
        phi_e_const = (
            -delta_phi_n_av + phi_s_n_av - (chi_av * pybamm.x_average(
                self._higher_order_macinnes_function(
                    c_e_n /
                    pybamm.PrimaryBroadcast(c_e_av, "negative electrode")))) -
            ((i_boundary_cc_0 * param.C_e * l_n / param.gamma_e) *
             (1 / (3 * kappa_n_av) - 1 / kappa_s_av)))

        phi_e_n = (
            pybamm.PrimaryBroadcast(phi_e_const, "negative electrode") +
            (chi_av_n * self._higher_order_macinnes_function(
                c_e_n / pybamm.PrimaryBroadcast(c_e_av, "negative electrode")))
            - pybamm.outer(
                i_boundary_cc_0 * (param.C_e / param.gamma_e) / kappa_n_av,
                (x_n**2 - l_n**2) / (2 * l_n),
            ) - pybamm.PrimaryBroadcast(
                i_boundary_cc_0 * l_n *
                (param.C_e / param.gamma_e) / kappa_s_av,
                "negative electrode",
            ))

        phi_e_s = (
            pybamm.PrimaryBroadcast(phi_e_const, "separator") +
            (chi_av_s * self._higher_order_macinnes_function(
                c_e_s / pybamm.PrimaryBroadcast(c_e_av, "separator"))) -
            pybamm.outer(
                i_boundary_cc_0 * param.C_e / param.gamma_e / kappa_s_av, x_s))

        phi_e_p = (
            pybamm.PrimaryBroadcast(phi_e_const, "positive electrode") +
            (chi_av_p * self._higher_order_macinnes_function(
                c_e_p / pybamm.PrimaryBroadcast(c_e_av, "positive electrode")))
            - pybamm.outer(
                i_boundary_cc_0 * (param.C_e / param.gamma_e) / kappa_p_av,
                (x_p * (2 - x_p) + l_p**2 - 1) / (2 * l_p),
            ) - pybamm.PrimaryBroadcast(
                i_boundary_cc_0 * (1 - l_p) *
                (param.C_e / param.gamma_e) / kappa_s_av,
                "positive electrode",
            ))

        phi_e = pybamm.Concatenation(phi_e_n, phi_e_s, phi_e_p)
        phi_e_av = pybamm.x_average(phi_e)

        # concentration overpotential
        eta_c_av = chi_av * (pybamm.x_average(
            self._higher_order_macinnes_function(
                c_e_p / pybamm.PrimaryBroadcast(c_e_av, "positive electrode")))
                             - pybamm.x_average(
                                 self._higher_order_macinnes_function(
                                     c_e_n / pybamm.PrimaryBroadcast(
                                         c_e_av, "negative electrode"))))

        # average electrolyte ohmic losses
        delta_phi_e_av = -(param.C_e * i_boundary_cc_0 / param.gamma_e) * (
            param.l_n / (3 * kappa_n_av) + param.l_s /
            (kappa_s_av) + param.l_p / (3 * kappa_p_av))

        variables.update(
            self._get_standard_potential_variables(phi_e, phi_e_av))
        variables.update(self._get_standard_current_variables(i_e))
        variables.update(
            self._get_split_overpotential(eta_c_av, delta_phi_e_av))

        return variables
コード例 #12
0
    def get_coupled_variables(self, variables):
        param = self.param
        l_n = param.l_n
        l_s = param.l_s
        l_p = param.l_p
        x_n = pybamm.standard_spatial_vars.x_n
        x_s = pybamm.standard_spatial_vars.x_s
        x_p = pybamm.standard_spatial_vars.x_p

        # Unpack
        T_0 = variables["Leading-order cell temperature"]
        c_e_0 = variables["Leading-order x-averaged electrolyte concentration"]
        # v_box_0 = variables["Leading-order volume-averaged velocity"]
        dc_e_0_dt = variables["Leading-order electrolyte concentration change"]
        eps_n_0 = variables[
            "Leading-order x-averaged negative electrode porosity"]
        eps_s_0 = variables["Leading-order x-averaged separator porosity"]
        eps_p_0 = variables[
            "Leading-order x-averaged positive electrode porosity"]
        deps_n_0_dt = variables[
            "Leading-order x-averaged negative electrode porosity change"]
        deps_p_0_dt = variables[
            "Leading-order x-averaged positive electrode porosity change"]

        # Combined time derivatives
        d_epsc_n_0_dt = c_e_0 * deps_n_0_dt + eps_n_0 * dc_e_0_dt
        d_epsc_s_0_dt = eps_s_0 * dc_e_0_dt
        d_epsc_p_0_dt = c_e_0 * deps_p_0_dt + eps_p_0 * dc_e_0_dt

        # Right-hand sides
        rhs_n = d_epsc_n_0_dt - sum(reaction["Negative"]["s"] * variables[
            "Leading-order x-averaged " + reaction["Negative"]["aj"].lower()]
                                    for reaction in self.reactions.values())
        rhs_s = d_epsc_s_0_dt
        rhs_p = d_epsc_p_0_dt - sum(reaction["Positive"]["s"] * variables[
            "Leading-order x-averaged " + reaction["Positive"]["aj"].lower()]
                                    for reaction in self.reactions.values())

        # Diffusivities
        D_e_n = (eps_n_0**param.b_n) * param.D_e(c_e_0, T_0)
        D_e_s = (eps_s_0**param.b_s) * param.D_e(c_e_0, T_0)
        D_e_p = (eps_p_0**param.b_p) * param.D_e(c_e_0, T_0)

        # Fluxes
        N_e_n_1 = -pybamm.outer(rhs_n, x_n)
        N_e_s_1 = -(pybamm.outer(rhs_s, (x_s - l_n)) +
                    pybamm.PrimaryBroadcast(rhs_n * l_n, "separator"))
        N_e_p_1 = -pybamm.outer(rhs_p, (x_p - 1))

        # Concentrations
        c_e_n_1 = pybamm.outer(rhs_n / (2 * D_e_n), x_n**2 - l_n**2)
        c_e_s_1 = pybamm.outer(rhs_s / 2, (x_s - l_n)**2) + pybamm.outer(
            rhs_n * l_n / D_e_s, x_s - l_n)
        c_e_p_1 = pybamm.outer(
            rhs_p / (2 * D_e_p),
            (x_p - 1)**2 - l_p**2) + pybamm.PrimaryBroadcast(
                (rhs_s * l_s**2 / (2 * D_e_s)) + (rhs_n * l_n * l_s / D_e_s),
                "positive electrode",
            )

        # Correct for integral
        c_e_n_1_av = -rhs_n * l_n**3 / (3 * D_e_n)
        c_e_s_1_av = (rhs_s * l_s**3 / 6 + rhs_n * l_n * l_s**2 / 2) / D_e_s
        c_e_p_1_av = (-rhs_p * l_p**3 / (3 * D_e_p) + (rhs_s * l_s**2 * l_p /
                                                       (2 * D_e_s)) +
                      (rhs_n * l_n * l_s * l_p / D_e_s))
        A_e = -(eps_n_0 * c_e_n_1_av + eps_s_0 * c_e_s_1_av + eps_p_0 *
                c_e_p_1_av) / (l_n * eps_n_0 + l_s * eps_s_0 + l_p * eps_p_0)
        c_e_n_1 += pybamm.PrimaryBroadcast(A_e, "negative electrode")
        c_e_s_1 += pybamm.PrimaryBroadcast(A_e, "separator")
        c_e_p_1 += pybamm.PrimaryBroadcast(A_e, "positive electrode")
        c_e_n_1_av += A_e
        c_e_s_1_av += A_e
        c_e_p_1_av += A_e

        # Update variables
        c_e = pybamm.Concatenation(
            pybamm.PrimaryBroadcast(c_e_0, "negative electrode") +
            param.C_e * c_e_n_1,
            pybamm.PrimaryBroadcast(c_e_0, "separator") + param.C_e * c_e_s_1,
            pybamm.PrimaryBroadcast(c_e_0, "positive electrode") +
            param.C_e * c_e_p_1,
        )
        variables.update(self._get_standard_concentration_variables(c_e))
        # Update with analytical expressions for first-order x-averages
        variables.update({
            "X-averaged first-order negative electrolyte concentration":
            c_e_n_1_av,
            "X-averaged first-order separator concentration":
            c_e_s_1_av,
            "X-averaged first-order positive electrolyte concentration":
            c_e_p_1_av,
        })

        N_e = pybamm.Concatenation(param.C_e * N_e_n_1, param.C_e * N_e_s_1,
                                   param.C_e * N_e_p_1)
        variables.update(self._get_standard_flux_variables(N_e))

        return variables