コード例 #1
0
ファイル: tune_gdac.py プロジェクト: themperek/pyBAR
    def analyze(self):
        self.register.set_global_register_value("Vthin_AltFine", self.vthin_altfine_best)
        self.register.set_global_register_value("Vthin_AltCoarse", self.vthin_altcoarse_best)

        plotThreeWay(self.occ_array_sel_pixel.transpose(), title="Occupancy after GDAC tuning (GDAC " + str(self.scan_parameters.GDAC) + ")", x_axis_title='Occupancy', filename=self.plots_filename, maximum=self.n_injections_gdac)
        if self.close_plots:
            self.plots_filename.close()
コード例 #2
0
ファイル: tune_fdac.py プロジェクト: liuhb08/pyBAR
    def analyze(self):
        self.register.set_pixel_register_value("FDAC", self.fdac_mask_best)

        plotThreeWay(hist=self.tot_mean_best.transpose(), title="Mean ToT after FDAC tuning", x_axis_title="Mean ToT", filename=self.plots_filename, minimum=0, maximum=15)
        plotThreeWay(hist=self.fdac_mask_best.transpose(), title="FDAC distribution after tuning", x_axis_title="FDAC", filename=self.plots_filename, minimum=0, maximum=15)
        if self.close_plots:
            self.plots_filename.close()
コード例 #3
0
ファイル: tune_tdac.py プロジェクト: liuhb08/pyBAR
    def analyze(self):
        self.register.set_pixel_register_value("TDAC", self.tdac_mask_best)

        plotThreeWay(hist=self.occupancy_best.transpose(), title="Occupancy after TDAC tuning", x_axis_title="Occupancy", filename=self.plots_filename, maximum=self.n_injections_tdac)
        plotThreeWay(hist=self.tdac_mask_best.transpose(), title="TDAC distribution after tuning", x_axis_title="TDAC", filename=self.plots_filename, maximum=32)
        if self.close_plots:
            self.plots_filename.close()
コード例 #4
0
ファイル: test_register.py プロジェクト: themperek/pyBAR
    def test_pixel_register(self,
                            pix_regs=[
                                "EnableDigInj", "Imon", "Enable", "C_High",
                                "C_Low", "TDAC", "FDAC"
                            ],
                            dcs=range(40)):
        '''Test Pixel Register
        '''
        logging.info('Running Pixel Register Test for %s' % str(pix_regs))
        self.register_utils.configure_pixel()
        commands = []
        commands.extend(self.register.get_commands("ConfMode"))
        self.register_utils.send_commands(commands)
        self.fifo_readout.reset_sram_fifo()

        plots = PdfPages(self.output_filename + ".pdf")

        for i, result in enumerate(
                read_pixel_register(self, pix_regs=pix_regs, dcs=dcs)):
            result_array = np.ones_like(result)
            result_array.data[result == self.register.get_pixel_register_value(
                pix_regs[i])] = 0
            logging.info("Pixel register %s: %d pixel error" %
                         (pix_regs[i], np.count_nonzero(result_array == 1)))
            plotting.plotThreeWay(
                result_array.T,
                title=str(pix_regs[i]) + " register test with " +
                str(np.count_nonzero(result_array == 1)) + '/' +
                str(26880 - np.ma.count_masked(result_array)) +
                " pixel failing",
                x_axis_title="0:OK, 1:FAIL",
                maximum=1,
                filename=plots)

        plots.close()
コード例 #5
0
ファイル: plot_occupancy.py プロジェクト: liuhb08/pyBAR
def draw_hit_map_from_raw_data(raw_data_file, front_ends):
    with PdfPages(raw_data_file[:-3] + '.pdf') as output_pdf:
        with tb.open_file(raw_data_file, 'r') as in_file_h5:
            raw_data = in_file_h5.root.raw_data[:]
            for front_end in range(front_ends):
                print 'Create occupancy hist of front end %d' % front_end
                occupancy_array, _, _ = np.histogram2d(*readout_utils.convert_data_array(raw_data,
                                                                                         filter_func=readout_utils.logical_and(readout_utils.is_data_record, readout_utils.is_data_from_channel(4 - front_end)),
                                                                                         converter_func=readout_utils.get_col_row_array_from_data_record_array), bins=(80, 336), range=[[1, 80], [1, 336]])
                plotting.plotThreeWay(hist=occupancy_array.T, title="Occupancy of chip %d" % front_end, x_axis_title="Occupancy", filename=output_pdf)
コード例 #6
0
ファイル: tune_fei4.py プロジェクト: mathieubenoit/pyBAR
    def analyze(self):
        if self.global_iterations:
            GdacTuning.analyze(self)
            FeedbackTuning.analyze(self)
        if self.local_iterations:
            TdacTuning.analyze(self)
            FdacTuning.analyze(self)

        if self.make_plots:
            if self.local_iterations:
                plotThreeWay(hist=self.tot_mean_best.transpose(),
                             title="Mean ToT after last FDAC tuning",
                             x_axis_title='Mean ToT',
                             filename=self.plots_filename)
                plotThreeWay(hist=self.register.get_pixel_register_value(
                    "FDAC").transpose(),
                             title="FDAC distribution after last FDAC tuning",
                             x_axis_title='FDAC',
                             filename=self.plots_filename,
                             maximum=16)
            if self.local_iterations >= 0:
                plotThreeWay(hist=self.occupancy_best.transpose(),
                             title="Occupancy after tuning",
                             x_axis_title='Occupancy',
                             filename=self.plots_filename,
                             maximum=100)
                plotThreeWay(hist=self.register.get_pixel_register_value(
                    "TDAC").transpose(),
                             title="TDAC distribution after complete tuning",
                             x_axis_title='TDAC',
                             filename=self.plots_filename,
                             maximum=32)

            self.plots_filename.close()
コード例 #7
0
ファイル: tune_tdac.py プロジェクト: themperek/pyBAR
    def analyze(self):
        self.register.set_pixel_register_value("TDAC", self.tdac_mask_best)

        plotThreeWay(hist=self.occupancy_best.transpose(),
                     title="Occupancy after TDAC tuning",
                     x_axis_title="Occupancy",
                     filename=self.plots_filename,
                     maximum=self.n_injections_tdac)
        plotThreeWay(hist=self.tdac_mask_best.transpose(),
                     title="TDAC distribution after tuning",
                     x_axis_title="TDAC",
                     filename=self.plots_filename,
                     maximum=32)
        if self.close_plots:
            self.plots_filename.close()
コード例 #8
0
    def analyze(self):
        self.register.set_pixel_register_value("FDAC", self.fdac_mask_best)

        plotThreeWay(hist=self.tot_mean_best.transpose(),
                     title="Mean ToT after FDAC tuning",
                     x_axis_title="Mean ToT",
                     filename=self.plots_filename,
                     minimum=0,
                     maximum=15)
        plotThreeWay(hist=self.fdac_mask_best.transpose(),
                     title="FDAC distribution after tuning",
                     x_axis_title="FDAC",
                     filename=self.plots_filename,
                     minimum=0,
                     maximum=15)
        if self.close_plots:
            self.plots_filename.close()
コード例 #9
0
    def analyze(self):
        self.register.set_global_register_value("Vthin_AltFine",
                                                self.last_good_threshold)
        self.register.set_pixel_register_value('TDAC', self.last_good_tdac)
        self.register.set_pixel_register_value('Enable',
                                               self.last_good_enable_mask)

        with AnalyzeRawData(raw_data_file=self.output_filename,
                            create_pdf=True) as analyze_raw_data:
            analyze_raw_data.create_source_scan_hist = True
            analyze_raw_data.interpreter.set_warning_output(False)
            analyze_raw_data.interpret_word_table()
            analyze_raw_data.interpreter.print_summary()
            analyze_raw_data.plot_histograms()
            plot_occupancy(self.last_occupancy_hist.T,
                           title='Noisy Pixels at Vthin_AltFine %d Step %d' %
                           (self.last_reg_val, self.last_step),
                           filename=analyze_raw_data.output_pdf)
            plot_fancy_occupancy(self.last_occupancy_hist.T,
                                 filename=analyze_raw_data.output_pdf)
            plot_occupancy(self.last_occupancy_mask.T,
                           title='Occupancy Mask at Vthin_AltFine %d Step %d' %
                           (self.last_reg_val, self.last_step),
                           z_max=1,
                           filename=analyze_raw_data.output_pdf)
            plot_fancy_occupancy(self.last_occupancy_mask.T,
                                 filename=analyze_raw_data.output_pdf)
            plotThreeWay(self.last_tdac_distribution.T,
                         title='TDAC at Vthin_AltFine %d Step %d' %
                         (self.last_reg_val, self.last_step),
                         x_axis_title="TDAC",
                         filename=analyze_raw_data.output_pdf,
                         maximum=31,
                         bins=32)
            plot_occupancy(self.last_tdac_distribution.T,
                           title='TDAC at Vthin_AltFine %d Step %d' %
                           (self.last_reg_val, self.last_step),
                           z_max=31,
                           filename=analyze_raw_data.output_pdf)
            plot_occupancy(self.register.get_pixel_register_value('Enable').T,
                           title='Enable Mask',
                           z_max=1,
                           filename=analyze_raw_data.output_pdf)
            plot_fancy_occupancy(
                self.register.get_pixel_register_value('Enable').T,
                filename=analyze_raw_data.output_pdf)
コード例 #10
0
    def analyze(self):
        self.register.set_global_register_value("Vthin_AltFine", self.last_good_threshold + self.increase_threshold)
        self.register.set_pixel_register_value('TDAC', self.last_good_tdac)
        self.register.set_pixel_register_value('Enable', self.last_good_enable_mask)

        with AnalyzeRawData(raw_data_file=self.output_filename, create_pdf=True) as analyze_raw_data:
            analyze_raw_data.create_source_scan_hist = True
            analyze_raw_data.interpreter.set_warning_output(False)
            analyze_raw_data.interpret_word_table()
            analyze_raw_data.interpreter.print_summary()
            analyze_raw_data.plot_histograms()
            plot_occupancy(self.last_occupancy_hist.T, title='Noisy Pixels at Vthin_AltFine %d Step %d' % (self.last_reg_val, self.last_step), filename=analyze_raw_data.output_pdf)
            plot_fancy_occupancy(self.last_occupancy_hist.T, filename=analyze_raw_data.output_pdf)
            plot_occupancy(self.last_occupancy_mask.T, title='Occupancy Mask at Vthin_AltFine %d Step %d' % (self.last_reg_val, self.last_step), z_max=1, filename=analyze_raw_data.output_pdf)
            plot_fancy_occupancy(self.last_occupancy_mask.T, filename=analyze_raw_data.output_pdf)
            plotThreeWay(self.last_tdac_distribution.T, title='TDAC at Vthin_AltFine %d Step %d' % (self.last_reg_val, self.last_step), x_axis_title="TDAC", filename=analyze_raw_data.output_pdf, maximum=31, bins=32)
            plot_occupancy(self.last_tdac_distribution.T, title='TDAC at Vthin_AltFine %d Step %d' % (self.last_reg_val, self.last_step), z_max=31, filename=analyze_raw_data.output_pdf)
            plot_occupancy(self.register.get_pixel_register_value('Enable').T, title='Enable Mask', z_max=1, filename=analyze_raw_data.output_pdf)
            plot_fancy_occupancy(self.register.get_pixel_register_value('Enable').T, filename=analyze_raw_data.output_pdf)
コード例 #11
0
ファイル: test_register.py プロジェクト: liuhb08/pyBAR
    def test_pixel_register(self, pix_regs=["EnableDigInj", "Imon", "Enable", "C_High", "C_Low", "TDAC", "FDAC"], dcs=range(40)):
        '''Test Pixel Register
        '''
        logging.info('Running Pixel Register Test for %s', str(pix_regs))
        self.register_utils.configure_pixel()
        commands = []
        commands.extend(self.register.get_commands("ConfMode"))
        self.register_utils.send_commands(commands)
        self.fifo_readout.reset_sram_fifo()

        pixel_register_errors = 0

        plots = PdfPages(self.output_filename + ".pdf")

        for i, result in enumerate(read_pixel_register(self, pix_regs=pix_regs, dcs=dcs)):
            result_array = np.ones_like(result)
            result_array.data[result == self.register.get_pixel_register_value(pix_regs[i])] = 0
            pixel_register_errors += np.count_nonzero(result_array == 1)
            logging.info("Pixel register %s: %d pixel error", pix_regs[i], np.count_nonzero(result_array == 1))
            plotting.plotThreeWay(result_array.T, title=str(pix_regs[i]) + " register test with " + str(np.count_nonzero(result_array == 1)) + '/' + str(26880 - np.ma.count_masked(result_array)) + " pixel failing", x_axis_title="0:OK, 1:FAIL", maximum=1, filename=plots)

        plots.close()
        return pixel_register_errors
コード例 #12
0
ファイル: tune_fei4.py プロジェクト: liuhb08/pyBAR
    def analyze(self):
        if self.global_iterations:
            GdacTuning.analyze(self)
            FeedbackTuning.analyze(self)
        if self.local_iterations:
            TdacTuning.analyze(self)
            FdacTuning.analyze(self)

        if self.make_plots:
            if self.local_iterations:
                plotThreeWay(hist=self.tot_mean_best.transpose(), title="Mean ToT after last FDAC tuning", x_axis_title='Mean ToT', filename=self.plots_filename)
                plotThreeWay(hist=self.register.get_pixel_register_value("FDAC").transpose(), title="FDAC distribution after last FDAC tuning", x_axis_title='FDAC', filename=self.plots_filename, maximum=16)
            if self.local_iterations >= 0:
                plotThreeWay(hist=self.occupancy_best.transpose(), title="Occupancy after tuning", x_axis_title='Occupancy', filename=self.plots_filename, maximum=100)
                plotThreeWay(hist=self.register.get_pixel_register_value("TDAC").transpose(), title="TDAC distribution after complete tuning", x_axis_title='TDAC', filename=self.plots_filename, maximum=32)

            self.plots_filename.close()
コード例 #13
0
    def analyze(self):
        def analyze_raw_data_file(file_name):
            with AnalyzeRawData(raw_data_file=file_name,
                                create_pdf=False) as analyze_raw_data:
                analyze_raw_data.create_tot_hist = False
                analyze_raw_data.create_fitted_threshold_hists = True
                analyze_raw_data.create_threshold_mask = True
                analyze_raw_data.interpreter.set_warning_output(
                    True
                )  # so far the data structure in a threshold scan was always bad, too many warnings given
                analyze_raw_data.interpret_word_table()

        def store_calibration_data_as_table(out_file_h5,
                                            mean_threshold_calibration,
                                            mean_threshold_rms_calibration,
                                            threshold_calibration,
                                            parameter_values):
            logging.info("Storing calibration data in a table...")
            filter_table = tb.Filters(complib='blosc',
                                      complevel=5,
                                      fletcher32=False)
            mean_threshold_calib_table = out_file_h5.createTable(
                out_file_h5.root,
                name='MeanThresholdCalibration',
                description=data_struct.MeanThresholdCalibrationTable,
                title='mean_threshold_calibration',
                filters=filter_table)
            threshold_calib_table = out_file_h5.createTable(
                out_file_h5.root,
                name='ThresholdCalibration',
                description=data_struct.ThresholdCalibrationTable,
                title='threshold_calibration',
                filters=filter_table)
            for column in range(80):
                for row in range(336):
                    for parameter_value_index, parameter_value in enumerate(
                            parameter_values):
                        threshold_calib_table.row['column'] = column
                        threshold_calib_table.row['row'] = row
                        threshold_calib_table.row[
                            'parameter_value'] = parameter_value
                        threshold_calib_table.row[
                            'threshold'] = threshold_calibration[
                                column, row, parameter_value_index]
                        threshold_calib_table.row.append()
            for parameter_value_index, parameter_value in enumerate(
                    parameter_values):
                mean_threshold_calib_table.row[
                    'parameter_value'] = parameter_value
                mean_threshold_calib_table.row[
                    'mean_threshold'] = mean_threshold_calibration[
                        parameter_value_index]
                mean_threshold_calib_table.row[
                    'threshold_rms'] = mean_threshold_rms_calibration[
                        parameter_value_index]
                mean_threshold_calib_table.row.append()
            threshold_calib_table.flush()
            mean_threshold_calib_table.flush()
            logging.info("done")

        def store_calibration_data_as_array(out_file_h5,
                                            mean_threshold_calibration,
                                            mean_threshold_rms_calibration,
                                            threshold_calibration):
            logging.info("Storing calibration data in an array...")
            filter_table = tb.Filters(complib='blosc',
                                      complevel=5,
                                      fletcher32=False)
            mean_threshold_calib_array = out_file_h5.createCArray(
                out_file_h5.root,
                name='HistThresholdMeanCalibration',
                atom=tb.Atom.from_dtype(mean_threshold_calibration.dtype),
                shape=mean_threshold_calibration.shape,
                title='mean_threshold_calibration',
                filters=filter_table)
            mean_threshold_calib_rms_array = out_file_h5.createCArray(
                out_file_h5.root,
                name='HistThresholdRMSCalibration',
                atom=tb.Atom.from_dtype(mean_threshold_calibration.dtype),
                shape=mean_threshold_calibration.shape,
                title='mean_threshold_rms_calibration',
                filters=filter_table)
            threshold_calib_array = out_file_h5.createCArray(
                out_file_h5.root,
                name='HistThresholdCalibration',
                atom=tb.Atom.from_dtype(threshold_calibration.dtype),
                shape=threshold_calibration.shape,
                title='threshold_calibration',
                filters=filter_table)
            mean_threshold_calib_array[:] = mean_threshold_calibration
            mean_threshold_calib_rms_array[:] = mean_threshold_rms_calibration
            threshold_calib_array[:] = threshold_calibration
            logging.info("done")

        def mask_columns(pixel_array, ignore_columns):
            idx = np.array(ignore_columns) - 1  # from FE to Array columns
            m = np.zeros_like(pixel_array)
            m[:, idx] = 1
            return np.ma.masked_array(pixel_array, m)

        calibration_file = self.output_filename + '_calibration'
        raw_data_files = analysis_utils.get_data_file_names_from_scan_base(
            self.output_filename,
            filter_file_words=['interpreted', 'calibration_calibration'])
        parameter_name = self.scan_parameters._fields[1]

        for raw_data_file in raw_data_files:  # no using multithreading here, it is already used in fit
            analyze_raw_data_file(raw_data_file)

        files_per_parameter = analysis_utils.get_parameter_value_from_file_names(
            [
                file_name[:-3] + '_interpreted.h5'
                for file_name in raw_data_files
            ], parameter_name)

        logging.info("Create calibration from data")
        with tb.openFile(
                self.output_filename + '.h5',
                mode="r") as in_file_h5:  # deduce settings from raw data file
            ignore_columns = in_file_h5.root.configuration.run_conf[:][
                np.where(in_file_h5.root.configuration.run_conf[:]['name'] ==
                         'ignore_columns')]['value'][0]
            ignore_columns = ast.literal_eval(ignore_columns)

        mean_threshold_calibration = np.empty(shape=(len(raw_data_files), ),
                                              dtype='<f8')
        mean_threshold_rms_calibration = np.empty(
            shape=(len(raw_data_files), ), dtype='<f8')
        threshold_calibration = np.empty(shape=(80, 336, len(raw_data_files)),
                                         dtype='<f8')

        if self.create_plots:
            logging.info('Saving calibration plots in: %s' %
                         (calibration_file + '.pdf'))
            output_pdf = PdfPages(calibration_file + '.pdf')

        parameter_values = []
        for index, (analyzed_data_file,
                    parameters) in enumerate(files_per_parameter.items()):
            parameter_values.append(parameters.values()[0][0])
            with tb.openFile(analyzed_data_file, mode="r") as in_file_h5:
                occupancy_masked = mask_columns(
                    pixel_array=in_file_h5.root.HistOcc[:],
                    ignore_columns=ignore_columns
                )  # mask the not scanned columns for analysis and plotting
                thresholds_masked = mask_columns(
                    pixel_array=in_file_h5.root.HistThresholdFitted[:],
                    ignore_columns=ignore_columns)
                if self.create_plots:
                    plotThreeWay(hist=thresholds_masked,
                                 title='Threshold Fitted for ' +
                                 parameters.keys()[0] + ' = ' +
                                 str(parameters.values()[0][0]),
                                 filename=output_pdf)
                    plsr_dacs = analysis_utils.get_scan_parameter(
                        meta_data_array=in_file_h5.root.meta_data[:]
                    )['PlsrDAC']
                    plot_scurves(occupancy_hist=occupancy_masked,
                                 scan_parameters=plsr_dacs,
                                 scan_parameter_name='PlsrDAC',
                                 filename=output_pdf)
                # fill the calibration data arrays
                mean_threshold_calibration[index] = np.ma.mean(
                    thresholds_masked)
                mean_threshold_rms_calibration[index] = np.ma.std(
                    thresholds_masked)
                threshold_calibration[:, :, index] = thresholds_masked.T

        with tb.openFile(calibration_file + '.h5', mode="w") as out_file_h5:
            store_calibration_data_as_array(
                out_file_h5=out_file_h5,
                mean_threshold_calibration=mean_threshold_calibration,
                mean_threshold_rms_calibration=mean_threshold_rms_calibration,
                threshold_calibration=threshold_calibration)
            store_calibration_data_as_table(
                out_file_h5=out_file_h5,
                mean_threshold_calibration=mean_threshold_calibration,
                mean_threshold_rms_calibration=mean_threshold_rms_calibration,
                threshold_calibration=threshold_calibration,
                parameter_values=parameter_values)

        if self.create_plots:
            plot_scatter(x=parameter_values,
                         y=mean_threshold_calibration,
                         title='Threshold calibration',
                         x_label=parameter_name,
                         y_label='Mean threshold',
                         log_x=False,
                         filename=output_pdf)
            plot_scatter(x=parameter_values,
                         y=mean_threshold_calibration,
                         title='Threshold calibration',
                         x_label=parameter_name,
                         y_label='Mean threshold',
                         log_x=True,
                         filename=output_pdf)
            output_pdf.close()
コード例 #14
0
    def analyze(self):
        #         plsr_dac_slope = self.register.calibration_parameters['C_Inj_High'] * self.register.calibration_parameters['Vcal_Coeff_1']
        plsr_dac_slope = 55.

        # Interpret data and create hit table
        with AnalyzeRawData(raw_data_file=self.output_filename,
                            create_pdf=False) as analyze_raw_data:
            analyze_raw_data.create_occupancy_hist = False  # too many scan parameters to do in ram histograming
            analyze_raw_data.create_hit_table = True
            analyze_raw_data.interpreter.set_warning_output(
                False)  # a lot of data produces unknown words
            analyze_raw_data.interpret_word_table()
            analyze_raw_data.interpreter.print_summary()

        # Create relative BCID and mean relative BCID histogram for each pixel / injection delay / PlsrDAC setting
        with tb.open_file(self.output_filename + '_analyzed.h5',
                          mode="w") as out_file_h5:
            hists_folder = out_file_h5.create_group(out_file_h5.root,
                                                    'PixelHistsMeanRelBcid')
            hists_folder_2 = out_file_h5.create_group(out_file_h5.root,
                                                      'PixelHistsRelBcid')
            hists_folder_3 = out_file_h5.create_group(out_file_h5.root,
                                                      'PixelHistsTot')
            hists_folder_4 = out_file_h5.create_group(out_file_h5.root,
                                                      'PixelHistsMeanTot')
            hists_folder_5 = out_file_h5.create_group(out_file_h5.root,
                                                      'HistsTot')

            def store_bcid_histograms(bcid_array, tot_array, tot_pixel_array):
                logging.debug('Store histograms for PlsrDAC ' +
                              str(old_plsr_dac))
                bcid_mean_array = np.average(
                    bcid_array, axis=3, weights=range(0, 16)
                ) * sum(range(0, 16)) / np.sum(bcid_array, axis=3).astype(
                    'f4'
                )  # calculate the mean BCID per pixel and scan parameter
                tot_pixel_mean_array = np.average(
                    tot_pixel_array, axis=3, weights=range(0, 16)
                ) * sum(range(0, 16)) / np.sum(tot_pixel_array, axis=3).astype(
                    'f4'
                )  # calculate the mean tot per pixel and scan parameter
                bcid_mean_result = np.swapaxes(bcid_mean_array, 0, 1)
                bcid_result = np.swapaxes(bcid_array, 0, 1)
                tot_pixel_result = np.swapaxes(tot_pixel_array, 0, 1)
                tot_mean_pixel_result = np.swapaxes(tot_pixel_mean_array, 0, 1)

                out = out_file_h5.createCArray(
                    hists_folder,
                    name='HistPixelMeanRelBcidPerDelayPlsrDac_%03d' %
                    old_plsr_dac,
                    title=
                    'Mean relative BCID hist per pixel and different PlsrDAC delays for PlsrDAC '
                    + str(old_plsr_dac),
                    atom=tb.Atom.from_dtype(bcid_mean_result.dtype),
                    shape=bcid_mean_result.shape,
                    filters=tb.Filters(complib='blosc',
                                       complevel=5,
                                       fletcher32=False))
                out.attrs.dimensions = 'column, row, injection delay'
                out.attrs.injection_delay_values = injection_delay
                out[:] = bcid_mean_result
                out_2 = out_file_h5.createCArray(
                    hists_folder_2,
                    name='HistPixelRelBcidPerDelayPlsrDac_%03d' % old_plsr_dac,
                    title=
                    'Relative BCID hist per pixel and different PlsrDAC delays for PlsrDAC '
                    + str(old_plsr_dac),
                    atom=tb.Atom.from_dtype(bcid_result.dtype),
                    shape=bcid_result.shape,
                    filters=tb.Filters(complib='blosc',
                                       complevel=5,
                                       fletcher32=False))
                out_2.attrs.dimensions = 'column, row, injection delay, relative bcid'
                out_2.attrs.injection_delay_values = injection_delay
                out_2[:] = bcid_result
                out_3 = out_file_h5.createCArray(
                    hists_folder_3,
                    name='HistPixelTotPerDelayPlsrDac_%03d' % old_plsr_dac,
                    title=
                    'Tot hist per pixel and different PlsrDAC delays for PlsrDAC '
                    + str(old_plsr_dac),
                    atom=tb.Atom.from_dtype(tot_pixel_result.dtype),
                    shape=tot_pixel_result.shape,
                    filters=tb.Filters(complib='blosc',
                                       complevel=5,
                                       fletcher32=False))
                out_3.attrs.dimensions = 'column, row, injection delay'
                out_3.attrs.injection_delay_values = injection_delay
                out_3[:] = tot_pixel_result
                out_4 = out_file_h5.createCArray(
                    hists_folder_4,
                    name='HistPixelMeanTotPerDelayPlsrDac_%03d' % old_plsr_dac,
                    title=
                    'Mean tot hist per pixel and different PlsrDAC delays for PlsrDAC '
                    + str(old_plsr_dac),
                    atom=tb.Atom.from_dtype(tot_mean_pixel_result.dtype),
                    shape=tot_mean_pixel_result.shape,
                    filters=tb.Filters(complib='blosc',
                                       complevel=5,
                                       fletcher32=False))
                out_4.attrs.dimensions = 'column, row, injection delay'
                out_4.attrs.injection_delay_values = injection_delay
                out_4[:] = tot_mean_pixel_result
                out_5 = out_file_h5.createCArray(
                    hists_folder_5,
                    name='HistTotPlsrDac_%03d' % old_plsr_dac,
                    title='Tot histogram for PlsrDAC ' + str(old_plsr_dac),
                    atom=tb.Atom.from_dtype(tot_array.dtype),
                    shape=tot_array.shape,
                    filters=tb.Filters(complib='blosc',
                                       complevel=5,
                                       fletcher32=False))
                out_5.attrs.injection_delay_values = injection_delay
                out_5[:] = tot_array

            old_plsr_dac = None

            # Get scan parameters from interpreted file
            with tb.open_file(self.output_filename + '_interpreted.h5',
                              'r') as in_file_h5:
                scan_parameters_dict = get_scan_parameter(
                    in_file_h5.root.meta_data[:])
                plsr_dac = scan_parameters_dict['PlsrDAC']
                hists_folder._v_attrs.plsr_dac_values = plsr_dac
                hists_folder_2._v_attrs.plsr_dac_values = plsr_dac
                hists_folder_3._v_attrs.plsr_dac_values = plsr_dac
                hists_folder_4._v_attrs.plsr_dac_values = plsr_dac
                injection_delay = scan_parameters_dict[scan_parameters_dict.keys(
                )[1]]  # injection delay par name is unknown and should  be in the inner loop
                scan_parameters = scan_parameters_dict.keys()

            bcid_array = np.zeros(
                (80, 336, len(injection_delay), 16),
                dtype=np.int16)  # bcid array of actual PlsrDAC
            tot_pixel_array = np.zeros(
                (80, 336, len(injection_delay), 16),
                dtype=np.int16)  # tot pixel array of actual PlsrDAC
            tot_array = np.zeros((16, ),
                                 dtype=np.int32)  # tot array of actual PlsrDAC

            logging.info('Store histograms for PlsrDAC values ' +
                         str(plsr_dac))
            progress_bar = progressbar.ProgressBar(widgets=[
                '',
                progressbar.Percentage(), ' ',
                progressbar.Bar(marker='*', left='|', right='|'), ' ',
                progressbar.AdaptiveETA()
            ],
                                                   maxval=max(plsr_dac) -
                                                   min(plsr_dac),
                                                   term_width=80)

            for index, (parameters, hits) in enumerate(
                    get_hits_of_scan_parameter(self.output_filename +
                                               '_interpreted.h5',
                                               scan_parameters,
                                               chunk_size=1.5e7)):
                if index == 0:
                    progress_bar.start(
                    )  # start after the event index is created to get reasonable ETA
                actual_plsr_dac, actual_injection_delay = parameters[
                    0], parameters[1]
                column, row, rel_bcid, tot = hits['column'] - 1, hits[
                    'row'] - 1, hits['relative_BCID'], hits['tot']
                bcid_array_fast = hist_3d_index(column,
                                                row,
                                                rel_bcid,
                                                shape=(80, 336, 16))
                tot_pixel_array_fast = hist_3d_index(column,
                                                     row,
                                                     tot,
                                                     shape=(80, 336, 16))
                tot_array_fast = hist_1d_index(tot, shape=(16, ))

                if old_plsr_dac != actual_plsr_dac:  # Store the data of the actual PlsrDAC value
                    if old_plsr_dac:  # Special case for the first PlsrDAC setting
                        store_bcid_histograms(bcid_array, tot_array,
                                              tot_pixel_array)
                        progress_bar.update(old_plsr_dac - min(plsr_dac))
                    # Reset the histrograms for the next PlsrDAC setting
                    bcid_array = np.zeros((80, 336, len(injection_delay), 16),
                                          dtype=np.int8)
                    tot_pixel_array = np.zeros(
                        (80, 336, len(injection_delay), 16), dtype=np.int8)
                    tot_array = np.zeros((16, ), dtype=np.int32)
                    old_plsr_dac = actual_plsr_dac
                injection_delay_index = np.where(
                    np.array(injection_delay) == actual_injection_delay)[0][0]
                bcid_array[:, :, injection_delay_index, :] += bcid_array_fast
                tot_pixel_array[:, :,
                                injection_delay_index, :] += tot_pixel_array_fast
                tot_array += tot_array_fast
            else:  # save histograms of last PlsrDAC setting
                store_bcid_histograms(bcid_array, tot_array, tot_pixel_array)
            progress_bar.finish()

        # Take the mean relative BCID histogram of each PlsrDAC value and calculate the delay for each pixel
        with tb.open_file(self.output_filename + '_analyzed.h5',
                          mode="r") as in_file_h5:
            # Create temporary result data structures
            plsr_dac_values = in_file_h5.root.PixelHistsMeanRelBcid._v_attrs.plsr_dac_values
            timewalk = np.zeros(shape=(80, 336, len(plsr_dac_values)),
                                dtype=np.int8)  # result array
            tot = np.zeros(shape=(len(plsr_dac_values), ),
                           dtype=np.float16)  # result array
            hit_delay = np.zeros(shape=(80, 336, len(plsr_dac_values)),
                                 dtype=np.int8)  # result array
            min_rel_bcid = np.zeros(
                shape=(80, 336), dtype=np.int8
            )  # Temp array to make sure that the Scurve from the same BCID is used
            delay_calibration_data = []
            delay_calibration_data_error = []

            # Calculate the minimum BCID. That is chosen to calculate the hit delay. Calculation does not have to work.
            plsr_dac_min = min(plsr_dac_values)
            rel_bcid_min_injection = in_file_h5.get_node(
                in_file_h5.root.PixelHistsMeanRelBcid,
                'HistPixelMeanRelBcidPerDelayPlsrDac_%03d' % plsr_dac_min)
            injection_delays = np.array(
                rel_bcid_min_injection.attrs.injection_delay_values)
            injection_delay_min = np.where(
                injection_delays == np.amax(injection_delays))[0][0]
            bcid_min = int(
                round(
                    np.mean(
                        np.ma.masked_array(
                            rel_bcid_min_injection[:, :, injection_delay_min],
                            np.isnan(
                                rel_bcid_min_injection[:, :,
                                                       injection_delay_min]))))
            ) - 1

            # Info output with progressbar
            logging.info('Create timewalk info for PlsrDACs ' +
                         str(plsr_dac_values))
            progress_bar = progressbar.ProgressBar(widgets=[
                '',
                progressbar.Percentage(), ' ',
                progressbar.Bar(marker='*', left='|', right='|'), ' ',
                progressbar.AdaptiveETA()
            ],
                                                   maxval=len(plsr_dac_values),
                                                   term_width=80)
            progress_bar.start()

            for index, node in enumerate(
                    in_file_h5.root.PixelHistsMeanRelBcid
            ):  # loop over all mean relative BCID hists for all PlsrDAC values
                # Select the S-curves
                pixel_data = node[:, :, :]
                pixel_data_fixed = pixel_data.reshape(
                    pixel_data.shape[0] * pixel_data.shape[1] *
                    pixel_data.shape[2])  # Reshape for interpolation of Nans
                nans, x = np.isnan(pixel_data_fixed), lambda z: z.nonzero()[0]
                pixel_data_fixed[nans] = np.interp(
                    x(nans), x(~nans),
                    pixel_data_fixed[~nans])  # interpolate Nans
                pixel_data_fixed = pixel_data_fixed.reshape(
                    pixel_data.shape[0], pixel_data.shape[1],
                    pixel_data.shape[2])  # Reshape after interpolation of Nans
                pixel_data_round = np.round(pixel_data_fixed)
                pixel_data_round_diff = np.diff(pixel_data_round, axis=2)
                index_sel = np.where(
                    np.logical_and(pixel_data_round_diff > 0.,
                                   np.isfinite(pixel_data_round_diff)))

                # Temporary result histograms to be filled
                first_scurve_mean = np.zeros(
                    shape=(80, 336), dtype=np.int8
                )  # the first S-curve in the data for the lowest injection (for time walk)
                second_scurve_mean = np.zeros(
                    shape=(80, 336), dtype=np.int8
                )  # the second S-curve in the data (to calibrate one inj. delay step)
                a_scurve_mean = np.zeros(
                    shape=(80, 336), dtype=np.int8
                )  # the mean of the S-curve at a given rel. BCID (for hit delay)

                # Loop over the S-curve means
                for (row_index, col_index, delay_index) in np.column_stack(
                    (index_sel)):
                    delay = injection_delays[delay_index]
                    if first_scurve_mean[col_index, row_index] == 0:
                        if delay_index == 0:  # ignore the first index, can be wrong due to nan filling
                            continue
                        if pixel_data_round[
                                row_index, col_index, delay] >= min_rel_bcid[
                                    col_index,
                                    row_index]:  # make sure to always use the data of the same BCID
                            first_scurve_mean[col_index, row_index] = delay
                            min_rel_bcid[col_index,
                                         row_index] = pixel_data_round[
                                             row_index, col_index, delay]
                    elif second_scurve_mean[col_index, row_index] == 0 and (
                            delay - first_scurve_mean[col_index, row_index]
                    ) > 20:  # minimum distance 10, can otherwise be data 'jitter'
                        second_scurve_mean[col_index, row_index] = delay
                    if pixel_data_round[row_index, col_index,
                                        delay] == bcid_min:
                        if a_scurve_mean[col_index, row_index] == 0:
                            a_scurve_mean[col_index, row_index] = delay

                plsr_dac = int(re.search(r'\d+', node.name).group())
                plsr_dac_index = np.where(plsr_dac_values == plsr_dac)[0][0]
                if (np.count_nonzero(first_scurve_mean) -
                        np.count_nonzero(a_scurve_mean)) > 1e3:
                    logging.warning(
                        "The common BCID to find the absolute hit delay was set wrong! Hit delay calculation will be wrong."
                    )
                selection = (second_scurve_mean -
                             first_scurve_mean)[np.logical_and(
                                 second_scurve_mean > 0,
                                 first_scurve_mean < second_scurve_mean)]
                delay_calibration_data.append(np.mean(selection))
                delay_calibration_data_error.append(np.std(selection))
                # Store the actual PlsrDAC data into result hist
                timewalk[:, :,
                         plsr_dac_index] = first_scurve_mean  # Save the plsr delay of first s-curve (for time walk calc.)
                hit_delay[:, :,
                          plsr_dac_index] = a_scurve_mean  # Save the plsr delay of s-curve of fixed rel. BCID (for hit delay calc.)
                progress_bar.update(index)

            for index, node in enumerate(
                    in_file_h5.root.HistsTot
            ):  # loop over tot hist for all PlsrDAC values
                plsr_dac = int(re.search(r'\d+', node.name).group())
                plsr_dac_index = np.where(plsr_dac_values == plsr_dac)[0][0]
                tot_data = node[:]
                tot[plsr_dac_index] = get_mean_from_histogram(
                    tot_data, range(16))

            # Calibrate the step size of the injection delay by the average difference of two Scurves of all pixels
            delay_calibration_mean = np.mean(
                np.array(delay_calibration_data[2:])[np.isfinite(
                    np.array(delay_calibration_data[2:]))])
            delay_calibration, delay_calibration_error = curve_fit(
                lambda x, par: (par),
                injection_delays,
                delay_calibration_data,
                p0=delay_calibration_mean,
                sigma=delay_calibration_data_error,
                absolute_sigma=True)
            delay_calibration, delay_calibration_error = delay_calibration[
                0], delay_calibration_error[0][0]

            progress_bar.finish()

        #  Save time walk / hit delay hists
        with tb.open_file(self.output_filename + '_analyzed.h5',
                          mode="r+") as out_file_h5:
            timewalk_result = np.swapaxes(timewalk, 0, 1)
            hit_delay_result = np.swapaxes(hit_delay, 0, 1)
            out = out_file_h5.createCArray(
                out_file_h5.root,
                name='HistPixelTimewalkPerPlsrDac',
                title='Time walk per pixel and PlsrDAC',
                atom=tb.Atom.from_dtype(timewalk_result.dtype),
                shape=timewalk_result.shape,
                filters=tb.Filters(complib='blosc',
                                   complevel=5,
                                   fletcher32=False))
            out_2 = out_file_h5.createCArray(
                out_file_h5.root,
                name='HistPixelHitDelayPerPlsrDac',
                title='Hit delay per pixel and PlsrDAC',
                atom=tb.Atom.from_dtype(hit_delay_result.dtype),
                shape=hit_delay_result.shape,
                filters=tb.Filters(complib='blosc',
                                   complevel=5,
                                   fletcher32=False))
            out_3 = out_file_h5.createCArray(
                out_file_h5.root,
                name='HistTotPerPlsrDac',
                title='Tot per PlsrDAC',
                atom=tb.Atom.from_dtype(tot.dtype),
                shape=tot.shape,
                filters=tb.Filters(complib='blosc',
                                   complevel=5,
                                   fletcher32=False))
            out.attrs.dimensions = 'column, row, PlsrDAC'
            out.attrs.delay_calibration = delay_calibration
            out.attrs.delay_calibration_error = delay_calibration_error
            out.attrs.plsr_dac_values = plsr_dac_values
            out_2.attrs.dimensions = 'column, row, PlsrDAC'
            out_2.attrs.delay_calibration = delay_calibration
            out_2.attrs.delay_calibration_error = delay_calibration_error
            out_2.attrs.plsr_dac_values = plsr_dac_values
            out_3.attrs.dimensions = 'PlsrDAC'
            out_3.attrs.plsr_dac_values = plsr_dac_values
            out[:] = timewalk_result
            out_2[:] = hit_delay_result
            out_3[:] = tot

        # Mask the pixels that have non valid data an create plot with the relative time walk for all pixels
        with tb.open_file(self.output_filename + '_analyzed.h5',
                          mode="r") as in_file_h5:

            def plot_hit_delay(hist_3d,
                               charge_values,
                               title,
                               xlabel,
                               ylabel,
                               filename,
                               threshold=None,
                               tot_values=None):
                # Interpolate tot values for second tot axis
                interpolation = interp1d(tot_values,
                                         charge_values,
                                         kind='slinear',
                                         bounds_error=True)
                tot = np.arange(16)
                tot = tot[np.logical_and(tot >= np.amin(tot_values),
                                         tot <= np.amax(tot_values))]

                array = np.transpose(hist_3d, axes=(2, 1, 0)).reshape(
                    hist_3d.shape[2], hist_3d.shape[0] * hist_3d.shape[1])
                y = np.mean(array, axis=1)
                y_err = np.std(array, axis=1)

                fig = Figure()
                canvas = FigureCanvas(fig)
                ax = fig.add_subplot(111)
                fig.patch.set_facecolor('white')
                ax.grid(True)
                ax.set_xlabel(xlabel)
                ax.set_ylabel(ylabel)
                ax.set_xlim((0, np.amax(charge_values)))
                ax.set_ylim((np.amin(y - y_err), np.amax(y + y_err)))
                ax.plot(charge_values, y, '.-', color='black', label=title)
                if threshold is not None:
                    ax.plot([threshold, threshold],
                            [np.amin(y - y_err),
                             np.amax(y + y_err)],
                            linestyle='--',
                            color='black',
                            label='Threshold\n%d e' % (threshold))
                ax.fill_between(charge_values,
                                y - y_err,
                                y + y_err,
                                color='gray',
                                alpha=0.5,
                                facecolor='gray',
                                label='RMS')
                ax2 = ax.twiny()
                ax2.set_xlabel("ToT")

                ticklab = ax2.xaxis.get_ticklabels()[0]
                trans = ticklab.get_transform()
                ax2.xaxis.set_label_coords(np.amax(charge_values),
                                           1,
                                           transform=trans)
                ax2.set_xlim(ax.get_xlim())
                ax2.set_xticks(interpolation(tot))
                ax2.set_xticklabels([str(int(i)) for i in tot])
                ax.text(0.5,
                        1.07,
                        title,
                        horizontalalignment='center',
                        fontsize=18,
                        transform=ax2.transAxes)
                ax.legend()
                filename.savefig(fig)

            plsr_dac_values = in_file_h5.root.PixelHistsMeanRelBcid._v_attrs.plsr_dac_values
            delay_calibration = in_file_h5.root.HistPixelHitDelayPerPlsrDac._v_attrs.delay_calibration
            charge_values = np.array(plsr_dac_values)[:] * plsr_dac_slope
            hist_timewalk = in_file_h5.root.HistPixelTimewalkPerPlsrDac[:, :, :]
            hist_hit_delay = in_file_h5.root.HistPixelHitDelayPerPlsrDac[:, :, :]
            tot = in_file_h5.root.HistTotPerPlsrDac[:]

            hist_rel_timewalk = np.amax(
                hist_timewalk, axis=2)[:, :, np.newaxis] - hist_timewalk
            hist_rel_hit_delay = np.mean(hist_hit_delay[:, :,
                                                        -1]) - hist_hit_delay

            # Create mask and apply for bad pixels
            mask = np.ones((336, 80, 50), dtype=np.int8)
            for node in in_file_h5.root.PixelHistsMeanRelBcid:
                pixel_data = node[:, :, :]
                a = (np.sum(pixel_data, axis=2))
                mask[np.isfinite(a), :] = 0

            hist_rel_timewalk = np.ma.masked_array(hist_rel_timewalk, mask)
            hist_hit_delay = np.ma.masked_array(hist_hit_delay, mask)

            output_pdf = PdfPages(self.output_filename + '.pdf')
            plot_hit_delay(np.swapaxes(hist_rel_timewalk, 0, 1) * 25. /
                           delay_calibration,
                           charge_values=charge_values,
                           title='Time walk',
                           xlabel='Charge [e]',
                           ylabel='Time walk [ns]',
                           filename=output_pdf,
                           threshold=np.amin(charge_values),
                           tot_values=tot)
            plot_hit_delay(np.swapaxes(hist_rel_hit_delay, 0, 1) * 25. /
                           delay_calibration,
                           charge_values=charge_values,
                           title='Hit delay',
                           xlabel='Charge [e]',
                           ylabel='Hit delay [ns]',
                           filename=output_pdf,
                           threshold=np.amin(charge_values),
                           tot_values=tot)
            plot_scurves(np.swapaxes(hist_rel_timewalk, 0, 1),
                         scan_parameters=charge_values,
                         title='Timewalk of the FE-I4',
                         scan_parameter_name='Charge [e]',
                         ylabel='Timewalk [ns]',
                         min_x=0,
                         y_scale=25. / delay_calibration,
                         filename=output_pdf)
            plot_scurves(
                np.swapaxes(hist_hit_delay[:, :, :], 0, 1),
                scan_parameters=charge_values,
                title=
                'Hit delay (T0) with internal charge injection\nof the FE-I4',
                scan_parameter_name='Charge [e]',
                ylabel='Hit delay [ns]',
                min_x=0,
                y_scale=25. / delay_calibration,
                filename=output_pdf)

            for i in [
                    0, 1,
                    len(plsr_dac_values) / 4,
                    len(plsr_dac_values) / 2, -1
            ]:  # plot 2d hist at min, 1/4, 1/2, max PlsrDAC setting
                plotThreeWay(hist_rel_timewalk[:, :, i] * 25. /
                             delay_calibration,
                             title='Time walk at %.0f e' % (charge_values[i]),
                             x_axis_title='Time walk [ns]',
                             filename=output_pdf)
                plotThreeWay(
                    hist_hit_delay[:, :, i] * 25. / delay_calibration,
                    title=
                    'Hit delay (T0) with internal charge injection at %.0f e' %
                    (charge_values[i]),
                    x_axis_title='Hit delay [ns]',
                    minimum=np.amin(hist_hit_delay[:, :, i]),
                    maximum=np.amax(hist_hit_delay[:, :, i]),
                    filename=output_pdf)
            output_pdf.close()
コード例 #15
0
ファイル: tune_tdac.py プロジェクト: liuhb08/pyBAR
    def scan(self):
        if not self.plots_filename:
            self.plots_filename = PdfPages(self.output_filename + '.pdf')
            self.close_plots = True
        else:
            self.close_plots = False
        mask_steps = 3
        enable_mask_steps = []
        cal_lvl1_command = self.register.get_commands("CAL")[0] + self.register.get_commands("zeros", length=40)[0] + self.register.get_commands("LV1")[0] + self.register.get_commands("zeros", mask_steps=mask_steps)[0]

        self.write_target_threshold()
        additional_scan = True
        lastBitResult = np.zeros(shape=self.register.get_pixel_register_value("TDAC").shape, dtype=self.register.get_pixel_register_value("TDAC").dtype)

        self.set_start_tdac()

        self.occupancy_best = np.empty(shape=(80, 336))  # array to store the best occupancy (closest to Ninjections/2) of the pixel
        self.occupancy_best.fill(self.n_injections_tdac)
        self.tdac_mask_best = self.register.get_pixel_register_value("TDAC")

        for scan_parameter_value, tdac_bit in enumerate(self.tdac_tune_bits):
            if additional_scan:
                self.set_tdac_bit(tdac_bit)
                logging.info('TDAC setting: bit %d = 1', tdac_bit)
            else:
                self.set_tdac_bit(tdac_bit, bit_value=0)
                logging.info('TDAC setting: bit %d = 0', tdac_bit)

            self.write_tdac_config()

            with self.readout(TDAC=scan_parameter_value, reset_sram_fifo=True, fill_buffer=True, clear_buffer=True, callback=self.handle_data):
                scan_loop(self, cal_lvl1_command, repeat_command=self.n_injections_tdac, mask_steps=mask_steps, enable_mask_steps=enable_mask_steps, enable_double_columns=None, same_mask_for_all_dc=True, eol_function=None, digital_injection=False, enable_shift_masks=self.enable_shift_masks, disable_shift_masks=self.disable_shift_masks, restore_shift_masks=True, mask=None, double_column_correction=self.pulser_dac_correction)

            occupancy_array, _, _ = np.histogram2d(*convert_data_array(data_array_from_data_iterable(self.fifo_readout.data), filter_func=is_data_record, converter_func=get_col_row_array_from_data_record_array), bins=(80, 336), range=[[1, 80], [1, 336]])
            select_better_pixel_mask = abs(occupancy_array - self.n_injections_tdac / 2) <= abs(self.occupancy_best - self.n_injections_tdac / 2)
            pixel_with_too_high_occupancy_mask = occupancy_array > self.n_injections_tdac / 2
            self.occupancy_best[select_better_pixel_mask] = occupancy_array[select_better_pixel_mask]

            if self.plot_intermediate_steps:
                plotThreeWay(occupancy_array.transpose(), title="Occupancy (TDAC tuning bit " + str(tdac_bit) + ")", x_axis_title='Occupancy', filename=self.plots_filename, maximum=self.n_injections_tdac)

            tdac_mask = self.register.get_pixel_register_value("TDAC")
            self.tdac_mask_best[select_better_pixel_mask] = tdac_mask[select_better_pixel_mask]

            if tdac_bit > 0:
                tdac_mask[pixel_with_too_high_occupancy_mask] = tdac_mask[pixel_with_too_high_occupancy_mask] & ~(1 << tdac_bit)
                self.register.set_pixel_register_value("TDAC", tdac_mask)

            if tdac_bit == 0:
                if additional_scan:  # scan bit = 0 with the correct value again
                    additional_scan = False
                    lastBitResult = occupancy_array.copy()
                    self.tdac_tune_bits.append(0)  # bit 0 has to be scanned twice
                else:
                    tdac_mask[abs(occupancy_array - self.n_injections_tdac / 2) > abs(lastBitResult - self.n_injections_tdac / 2)] = tdac_mask[abs(occupancy_array - self.n_injections_tdac / 2) > abs(lastBitResult - self.n_injections_tdac / 2)] | (1 << tdac_bit)
                    occupancy_array[abs(occupancy_array - self.n_injections_tdac / 2) > abs(lastBitResult - self.n_injections_tdac / 2)] = lastBitResult[abs(occupancy_array - self.n_injections_tdac / 2) > abs(lastBitResult - self.n_injections_tdac / 2)]
                    self.occupancy_best[abs(occupancy_array - self.n_injections_tdac / 2) <= abs(self.occupancy_best - self.n_injections_tdac / 2)] = occupancy_array[abs(occupancy_array - self.n_injections_tdac / 2) <= abs(self.occupancy_best - self.n_injections_tdac / 2)]
                    self.tdac_mask_best[abs(occupancy_array - self.n_injections_tdac / 2) <= abs(self.occupancy_best - self.n_injections_tdac / 2)] = tdac_mask[abs(occupancy_array - self.n_injections_tdac / 2) <= abs(self.occupancy_best - self.n_injections_tdac / 2)]

        self.register.set_pixel_register_value("TDAC", self.tdac_mask_best)  # set value for meta scan
        self.write_tdac_config()
コード例 #16
0
def histogram_tdc_hits(input_file_hits, hit_selection_conditions, event_status_select_mask, event_status_condition, calibation_file=None, max_tdc=analysis_configuration['max_tdc'], n_bins=analysis_configuration['n_bins']):
    for condition in hit_selection_conditions:
        logging.info('Histogram tdc hits with %s', condition)

    def get_charge(max_tdc, tdc_calibration_values, tdc_pixel_calibration):  # return the charge from calibration
        charge_calibration = np.zeros(shape=(80, 336, max_tdc))
        for column in range(80):
            for row in range(336):
                actual_pixel_calibration = tdc_pixel_calibration[column, row, :]
                if np.any(actual_pixel_calibration != 0) and np.all(np.isfinite(actual_pixel_calibration)):
                    interpolation = interp1d(x=actual_pixel_calibration, y=tdc_calibration_values, kind='slinear', bounds_error=False, fill_value=0)
                    charge_calibration[column, row, :] = interpolation(np.arange(max_tdc))
        return charge_calibration

    def plot_tdc_tot_correlation(data, condition, output_pdf):
        logging.info('Plot correlation histogram for %s', condition)
        plt.clf()
        data = np.ma.array(data, mask=(data <= 0))
        if np.ma.any(data > 0):
            cmap = cm.get_cmap('jet', 200)
            cmap.set_bad('w')
            plt.title('Correlation with %s' % condition)
            norm = colors.LogNorm()
            z_max = data.max(fill_value=0)
            plt.xlabel('TDC')
            plt.ylabel('TOT')
            im = plt.imshow(data, cmap=cmap, norm=norm, aspect='auto', interpolation='nearest')  # , norm=norm)
            divider = make_axes_locatable(plt.gca())
            plt.gca().invert_yaxis()
            cax = divider.append_axes("right", size="5%", pad=0.1)
            plt.colorbar(im, cax=cax, ticks=np.linspace(start=0, stop=z_max, num=9, endpoint=True))
            output_pdf.savefig()
        else:
            logging.warning('No data for correlation plotting for %s', condition)

    def plot_hits_per_condition(output_pdf):
        logging.info('Plot hits selection efficiency histogram for %d conditions', len(hit_selection_conditions) + 2)
        labels = ['All Hits', 'Hits of\ngood events']
        for condition in hit_selection_conditions:
            condition = re.sub('[&]', '\n', condition)
            condition = re.sub('[()]', '', condition)
            labels.append(condition)
        plt.bar(range(len(n_hits_per_condition)), n_hits_per_condition, align='center')
        plt.xticks(range(len(n_hits_per_condition)), labels, size=8)
        plt.title('Number of hits for different cuts')
        plt.yscale('log')
        plt.ylabel('#')
        plt.grid()
        for x, y in zip(np.arange(len(n_hits_per_condition)), n_hits_per_condition):
            plt.annotate('%d' % (float(y) / float(n_hits_per_condition[0]) * 100.) + r'%', xy=(x, y / 2.), xycoords='data', color='grey', size=15)
        output_pdf.savefig()

    def plot_corrected_tdc_hist(x, y, title, output_pdf, point_style='-'):
        logging.info('Plot TDC hist with TDC calibration')
        plt.clf()
        y /= np.amax(y) if y.shape[0] > 0 else y
        plt.plot(x, y, point_style)
        plt.title(title, size=10)
        plt.xlabel('Charge [PlsrDAC]')
        plt.ylabel('Count [a.u.]')
        plt.grid()
        output_pdf.savefig()

    # Create data
    with tb.openFile(input_file_hits, mode="r") as in_hit_file_h5:
        cluster_hit_table = in_hit_file_h5.root.ClusterHits

        # Result hists, initialized per condition
        pixel_tdc_hists_per_condition = [np.zeros(shape=(80, 336, max_tdc), dtype=np.uint16) for _ in hit_selection_conditions] if hit_selection_conditions else []
        pixel_tdc_timestamp_hists_per_condition = [np.zeros(shape=(80, 336, 256), dtype=np.uint16) for _ in hit_selection_conditions] if hit_selection_conditions else []
        mean_pixel_tdc_hists_per_condition = [np.zeros(shape=(80, 336), dtype=np.uint16) for _ in hit_selection_conditions] if hit_selection_conditions else []
        mean_pixel_tdc_timestamp_hists_per_condition = [np.zeros(shape=(80, 336), dtype=np.uint16) for _ in hit_selection_conditions] if hit_selection_conditions else []
        tdc_hists_per_condition = [np.zeros(shape=(max_tdc), dtype=np.uint16) for _ in hit_selection_conditions] if hit_selection_conditions else []
        tdc_corr_hists_per_condition = [np.zeros(shape=(max_tdc, 16), dtype=np.uint32) for _ in hit_selection_conditions] if hit_selection_conditions else []

        n_hits_per_condition = [0 for _ in range(len(hit_selection_conditions) + 2)]  # condition 1, 2 are all hits, hits of goode events

        logging.info('Select hits and create TDC histograms for %d cut conditions', len(hit_selection_conditions))
        progress_bar = progressbar.ProgressBar(widgets=['', progressbar.Percentage(), ' ', progressbar.Bar(marker='*', left='|', right='|'), ' ', progressbar.AdaptiveETA()], maxval=cluster_hit_table.shape[0], term_width=80)
        progress_bar.start()
        for cluster_hits, _ in analysis_utils.data_aligned_at_events(cluster_hit_table, chunk_size=1e8):
            n_hits_per_condition[0] += cluster_hits.shape[0]
            selected_events_cluster_hits = cluster_hits[np.logical_and(cluster_hits['TDC'] < max_tdc, (cluster_hits['event_status'] & event_status_select_mask) == event_status_condition)]
            n_hits_per_condition[1] += selected_events_cluster_hits.shape[0]
            for index, condition in enumerate(hit_selection_conditions):
                selected_cluster_hits = analysis_utils.select_hits(selected_events_cluster_hits, condition)
                n_hits_per_condition[2 + index] += selected_cluster_hits.shape[0]
                column, row, tdc = selected_cluster_hits['column'] - 1, selected_cluster_hits['row'] - 1, selected_cluster_hits['TDC']
                pixel_tdc_hists_per_condition[index] += analysis_utils.hist_3d_index(column, row, tdc, shape=(80, 336, max_tdc))
                mean_pixel_tdc_hists_per_condition[index] = np.average(pixel_tdc_hists_per_condition[index], axis=2, weights=range(0, max_tdc)) * np.sum(np.arange(0, max_tdc)) / pixel_tdc_hists_per_condition[index].sum(axis=2)
                tdc_timestamp = selected_cluster_hits['TDC_time_stamp']
                pixel_tdc_timestamp_hists_per_condition[index] += analysis_utils.hist_3d_index(column, row, tdc_timestamp, shape=(80, 336, 256))
                mean_pixel_tdc_timestamp_hists_per_condition[index] = np.average(pixel_tdc_timestamp_hists_per_condition[index], axis=2, weights=range(0, 256)) * np.sum(np.arange(0, 256)) / pixel_tdc_timestamp_hists_per_condition[index].sum(axis=2)
                tdc_hists_per_condition[index] = pixel_tdc_hists_per_condition[index].sum(axis=(0, 1))
                tdc_corr_hists_per_condition[index] += analysis_utils.hist_2d_index(tdc, selected_cluster_hits['tot'], shape=(max_tdc, 16))
            progress_bar.update(n_hits_per_condition[0])
        progress_bar.finish()

        # Take TDC calibration if available and calculate charge for each TDC value and pixel
        if calibation_file is not None:
            with tb.openFile(calibation_file, mode="r") as in_file_calibration_h5:
                tdc_calibration = in_file_calibration_h5.root.HitOrCalibration[:, :, :, 1]
                tdc_calibration_values = in_file_calibration_h5.root.HitOrCalibration.attrs.scan_parameter_values[:]
            charge_calibration = get_charge(max_tdc, tdc_calibration_values, tdc_calibration)
        else:
            charge_calibration = None

        # Store data of result histograms
        with tb.open_file(input_file_hits[:-3] + '_tdc_hists.h5', mode="w") as out_file_h5:
            for index, condition in enumerate(hit_selection_conditions):
                pixel_tdc_hist_result = np.swapaxes(pixel_tdc_hists_per_condition[index], 0, 1)
                pixel_tdc_timestamp_hist_result = np.swapaxes(pixel_tdc_timestamp_hists_per_condition[index], 0, 1)
                mean_pixel_tdc_hist_result = np.swapaxes(mean_pixel_tdc_hists_per_condition[index], 0, 1)
                mean_pixel_tdc_timestamp_hist_result = np.swapaxes(mean_pixel_tdc_timestamp_hists_per_condition[index], 0, 1)
                tdc_hists_per_condition_result = tdc_hists_per_condition[index]
                tdc_corr_hist_result = np.swapaxes(tdc_corr_hists_per_condition[index], 0, 1)
                # Create result hists
                out_1 = out_file_h5.createCArray(out_file_h5.root, name='HistPixelTdcCondition_%d' % index, title='Hist Pixel Tdc with %s' % condition, atom=tb.Atom.from_dtype(pixel_tdc_hist_result.dtype), shape=pixel_tdc_hist_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out_2 = out_file_h5.createCArray(out_file_h5.root, name='HistPixelTdcTimestampCondition_%d' % index, title='Hist Pixel Tdc Timestamp with %s' % condition, atom=tb.Atom.from_dtype(pixel_tdc_timestamp_hist_result.dtype), shape=pixel_tdc_timestamp_hist_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out_3 = out_file_h5.createCArray(out_file_h5.root, name='HistMeanPixelTdcCondition_%d' % index, title='Hist Mean Pixel Tdc with %s' % condition, atom=tb.Atom.from_dtype(mean_pixel_tdc_hist_result.dtype), shape=mean_pixel_tdc_hist_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out_4 = out_file_h5.createCArray(out_file_h5.root, name='HistMeanPixelTdcTimestampCondition_%d' % index, title='Hist Mean Pixel Tdc Timestamp with %s' % condition, atom=tb.Atom.from_dtype(mean_pixel_tdc_timestamp_hist_result.dtype), shape=mean_pixel_tdc_timestamp_hist_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out_5 = out_file_h5.createCArray(out_file_h5.root, name='HistTdcCondition_%d' % index, title='Hist Tdc with %s' % condition, atom=tb.Atom.from_dtype(tdc_hists_per_condition_result.dtype), shape=tdc_hists_per_condition_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out_6 = out_file_h5.createCArray(out_file_h5.root, name='HistTdcCorrCondition_%d' % index, title='Hist Correlation Tdc/Tot with %s' % condition, atom=tb.Atom.from_dtype(tdc_corr_hist_result.dtype), shape=tdc_corr_hist_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                # Add result hists information
                out_1.attrs.dimensions, out_1.attrs.condition, out_1.attrs.tdc_values = 'column, row, TDC value', condition, range(max_tdc)
                out_2.attrs.dimensions, out_2.attrs.condition, out_2.attrs.tdc_values = 'column, row, TDC time stamp value', condition, range(256)
                out_3.attrs.dimensions, out_3.attrs.condition = 'column, row, mean TDC value', condition
                out_4.attrs.dimensions, out_4.attrs.condition = 'column, row, mean TDC time stamp value', condition
                out_5.attrs.dimensions, out_5.attrs.condition = 'PlsrDAC', condition
                out_6.attrs.dimensions, out_6.attrs.condition = 'TDC, TOT', condition
                out_1[:], out_2[:], out_3[:], out_4[:], out_5[:], out_6[:] = pixel_tdc_hist_result, pixel_tdc_timestamp_hist_result, mean_pixel_tdc_hist_result, mean_pixel_tdc_timestamp_hist_result, tdc_hists_per_condition_result, tdc_corr_hist_result

                if charge_calibration is not None:
                    # Select only valid pixel for histograming: they have data and a calibration (that is any charge(TDC) calibration != 0)
                    valid_pixel = np.where(np.logical_and(charge_calibration[:, :, :max_tdc].sum(axis=2) > 0, pixel_tdc_hist_result[:, :, :max_tdc].swapaxes(0, 1).sum(axis=2) > 0))

                    mean_charge_calibration = charge_calibration[valid_pixel][:, :max_tdc].mean(axis=0)
                    mean_tdc_hist = pixel_tdc_hist_result.swapaxes(0, 1)[valid_pixel][:, :max_tdc].mean(axis=0)
                    result_array = np.rec.array(np.column_stack((mean_charge_calibration, mean_tdc_hist)), dtype=[('charge', float), ('count', float)])
                    out_6 = out_file_h5.create_table(out_file_h5.root, name='HistMeanTdcCalibratedCondition_%d' % index, description=result_array.dtype, title='Hist Tdc with mean charge calibration and %s' % condition, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                    out_6.attrs.condition = condition
                    out_6.attrs.n_pixel = valid_pixel[0].shape[0]
                    out_6.append(result_array)
                    # Create charge histogram with per pixel TDC(charge) calibration
                    x, y = charge_calibration[valid_pixel][:, :max_tdc].ravel(), np.ravel(pixel_tdc_hist_result.swapaxes(0, 1)[valid_pixel][:, :max_tdc].ravel())
                    y, x = y[x > 0], x[x > 0]  # remove the hit tdcs without proper calibration plsrDAC(TDC) calibration
                    x, y, yerr = analysis_utils.get_profile_histogram(x, y, n_bins=n_bins)
                    result_array = np.rec.array(np.column_stack((x, y, yerr)), dtype=[('charge', float), ('count', float), ('count_error', float)])
                    out_7 = out_file_h5.create_table(out_file_h5.root, name='HistTdcCalibratedCondition_%d' % index, description=result_array.dtype, title='Hist Tdc with per pixel charge calibration and %s' % condition, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                    out_7.attrs.condition = condition
                    out_7.attrs.n_pixel = valid_pixel[0].shape[0]
                    out_7.append(result_array)

    # Plot Data
    with PdfPages(input_file_hits[:-3] + '_calibrated_tdc_hists.pdf') as output_pdf:
        plot_hits_per_condition(output_pdf)
        with tb.open_file(input_file_hits[:-3] + '_tdc_hists.h5', mode="r") as in_file_h5:
            for node in in_file_h5.root:  # go through the data and plot them
                if 'MeanPixel' in node.name:
                    try:
                        plotThreeWay(np.ma.masked_invalid(node[:]) * 1.5625, title='Mean TDC delay, hits with\n%s' % node._v_attrs.condition if 'Timestamp' in node.name else 'Mean TDC, hits with\n%s' % node._v_attrs.condition, filename=output_pdf)
                    except ValueError:
                        logging.warning('Cannot plot TDC delay')
                elif 'HistTdcCondition' in node.name:
                    hist_1d = node[:]
                    entry_index = np.where(hist_1d != 0)
                    if entry_index[0].shape[0] != 0:
                        max_index = np.amax(entry_index)
                    else:
                        max_index = max_tdc
                    plot_1d_hist(hist_1d[:max_index + 10], title='TDC histogram, hits with\n%s' % node._v_attrs.condition if 'Timestamp' not in node.name else 'TDC time stamp histogram, hits with\n%s' % node._v_attrs.condition, x_axis_title='TDC' if 'Timestamp' not in node.name else 'TDC time stamp', filename=output_pdf)
                elif 'HistPixelTdc' in node.name:
                    hist_3d = node[:]
                    entry_index = np.where(hist_3d.sum(axis=(0, 1)) != 0)
                    if entry_index[0].shape[0] != 0:
                        max_index = np.amax(entry_index)
                    else:
                        max_index = max_tdc
                    best_pixel_index = np.where(hist_3d.sum(axis=2) == np.amax(node[:].sum(axis=2)))
                    if best_pixel_index[0].shape[0] == 1:  # there could be more than one pixel with most hits
                        plot_1d_hist(hist_3d[best_pixel_index][0, :max_index], title='TDC histogram of pixel %d, %d\n%s' % (best_pixel_index[1] + 1, best_pixel_index[0] + 1, node._v_attrs.condition) if 'Timestamp' not in node.name else 'TDC time stamp histogram, hits of pixel %d, %d' % (best_pixel_index[1] + 1, best_pixel_index[0] + 1), x_axis_title='TDC' if 'Timestamp' not in node.name else 'TDC time stamp', filename=output_pdf)
                elif 'HistTdcCalibratedCondition' in node.name:
                    plot_corrected_tdc_hist(node[:]['charge'], node[:]['count'], title='TDC histogram, %d pixel, per pixel TDC calib.\n%s' % (node._v_attrs.n_pixel, node._v_attrs.condition), output_pdf=output_pdf)
                elif 'HistMeanTdcCalibratedCondition' in node.name:
                    plot_corrected_tdc_hist(node[:]['charge'], node[:]['count'], title='TDC histogram, %d pixel, mean TDC calib.\n%s' % (node._v_attrs.n_pixel, node._v_attrs.condition), output_pdf=output_pdf)
                elif 'HistTdcCorr' in node.name:
                    plot_tdc_tot_correlation(node[:], node._v_attrs.condition, output_pdf)
コード例 #17
0
ファイル: tune_gdac.py プロジェクト: themperek/pyBAR
    def scan(self):
        if not self.plots_filename:
            self.plots_filename = PdfPages(self.output_filename + '.pdf')
            self.close_plots = True
        else:
            self.close_plots = False
        cal_lvl1_command = self.register.get_commands("CAL")[0] + self.register.get_commands("zeros", length=40)[0] + self.register.get_commands("LV1")[0] + self.register.get_commands("zeros", mask_steps=self.mask_steps_gdac)[0]

        self.write_target_threshold()
        for gdac_bit in self.gdac_tune_bits:  # reset all GDAC bits
            self.set_gdac_bit(gdac_bit, bit_value=0)

        additional_scan = True
        last_bit_result = self.n_injections_gdac
        decreased_threshold = False  # needed to determine if the FE is noisy
        all_bits_zero = True

        def bits_set(int_type):
            int_type = int(int_type)
            count = 0
            position = 0
            bits_set = []
            while(int_type):
                if(int_type & 1):
                    bits_set.append(position)
                position += 1
                int_type = int_type >> 1
                count += 1
            return bits_set

        # calculate selected pixels from the mask and the disabled columns
        select_mask_array = np.zeros(shape=(80, 336), dtype=np.uint8)
        if not self.enable_mask_steps_gdac:
            self.enable_mask_steps_gdac = range(self.mask_steps_gdac)
        for mask_step in self.enable_mask_steps_gdac:
            select_mask_array += make_pixel_mask(steps=self.mask_steps_gdac, shift=mask_step)
        for column in bits_set(self.register.get_global_register_value("DisableColumnCnfg")):
            logging.info('Deselect double column %d' % column)
            select_mask_array[column, :] = 0

        occupancy_best = 0
        vthin_af_best = self.register.get_global_register_value("Vthin_AltFine")
        vthin_ac_best = self.register.get_global_register_value("Vthin_AltCoarse")
        for gdac_bit in self.gdac_tune_bits:

            if additional_scan:
                self.set_gdac_bit(gdac_bit)
                scan_parameter_value = (self.register.get_global_register_value("Vthin_AltCoarse") << 8) + self.register.get_global_register_value("Vthin_AltFine")
                logging.info('GDAC setting: %d, bit %d = 1' % (scan_parameter_value, gdac_bit))
            else:
                self.set_gdac_bit(gdac_bit, bit_value=0)
                scan_parameter_value = (self.register.get_global_register_value("Vthin_AltCoarse") << 8) + self.register.get_global_register_value("Vthin_AltFine")
                logging.info('GDAC setting: %d, bit %d = 0' % (scan_parameter_value, gdac_bit))

            with self.readout(GDAC=scan_parameter_value):
                scan_loop(self, cal_lvl1_command, repeat_command=self.n_injections_gdac, mask_steps=self.mask_steps_gdac, enable_mask_steps=self.enable_mask_steps_gdac, enable_double_columns=None, same_mask_for_all_dc=True, eol_function=None, digital_injection=False, enable_shift_masks=self.enable_shift_masks, disable_shift_masks=self.disable_shift_masks, restore_shift_masks=True, mask=None, double_column_correction=self.pulser_dac_correction)

            self.raw_data_file.append(self.fifo_readout.data, scan_parameters=self.scan_parameters._asdict())

            occupancy_array, _, _ = np.histogram2d(*convert_data_array(data_array_from_data_iterable(self.fifo_readout.data), filter_func=is_data_record, converter_func=get_col_row_array_from_data_record_array), bins=(80, 336), range=[[1, 80], [1, 336]])
            self.occ_array_sel_pixel = np.ma.array(occupancy_array, mask=np.logical_not(np.ma.make_mask(select_mask_array)))  # take only selected pixel into account by creating a mask
            median_occupancy = np.ma.median(self.occ_array_sel_pixel)
            if abs(median_occupancy - self.n_injections_gdac / 2) < abs(occupancy_best - self.n_injections_gdac / 2):
                occupancy_best = median_occupancy
                vthin_af_best = self.register.get_global_register_value("Vthin_AltFine")
                vthin_ac_best = self.register.get_global_register_value("Vthin_AltCoarse")

            if self.plot_intermediate_steps:
                plotThreeWay(self.occ_array_sel_pixel.transpose(), title="Occupancy (GDAC " + str(scan_parameter_value) + " with tuning bit " + str(gdac_bit) + ")", x_axis_title='Occupancy', filename=self.plots_filename, maximum=self.n_injections_gdac)

            if abs(median_occupancy - self.n_injections_gdac / 2) < self.max_delta_threshold and gdac_bit > 0:  # abort if good value already found to save time
                logging.info('Median = %f, good result already achieved (median - Ninj/2 < %f), skipping not varied bits' % (median_occupancy, self.max_delta_threshold))
                break

            if median_occupancy == 0 and decreased_threshold and all_bits_zero:
                logging.info('FE noisy?')

            if gdac_bit > 0:
                if (median_occupancy < self.n_injections_gdac / 2):  # set GDAC bit to 0 if the occupancy is too lowm, thus decrease threshold
                    logging.info('Median = %f < %f, set bit %d = 0' % (median_occupancy, self.n_injections_gdac / 2, gdac_bit))
                    self.set_gdac_bit(gdac_bit, bit_value=0)
                    decreased_threshold = True
                else:  # set GDAC bit to 1 if the occupancy is too high, thus increase threshold
                    logging.info('Median = %f > %f, leave bit %d = 1' % (median_occupancy, self.n_injections_gdac / 2, gdac_bit))
                    decreased_threshold = False
                    all_bits_zero = False

            if gdac_bit == 0:
                if additional_scan:  # scan bit = 0 with the correct value again
                    additional_scan = False
                    last_bit_result = self.occ_array_sel_pixel.copy()
                    self.gdac_tune_bits.append(0)  # bit 0 has to be scanned twice
                else:
                    last_bit_result_median = np.median(last_bit_result[select_mask_array > 0])
                    logging.info('Scanned bit 0 = 0 with %f instead of %f' % (median_occupancy, last_bit_result_median))
                    if abs(median_occupancy - self.n_injections_gdac / 2) > abs(last_bit_result_median - self.n_injections_gdac / 2):  # if bit 0 = 0 is worse than bit 0 = 1, so go back
                        self.set_gdac_bit(gdac_bit, bit_value=1)
                        logging.info('Set bit 0 = 1')
                        self.occ_array_sel_pixel = last_bit_result
                        median_occupancy = np.ma.median(self.occ_array_sel_pixel)
                    else:
                        logging.info('Set bit 0 = 0')
                    if abs(occupancy_best - self.n_injections_gdac / 2) < abs(median_occupancy - self.n_injections_gdac / 2):
                        logging.info("Binary search converged to non optimal value, take best measured value instead")
                        median_occupancy = occupancy_best
                        self.register.set_global_register_value("Vthin_AltFine", vthin_af_best)
                        self.register.set_global_register_value("Vthin_AltCoarse", vthin_ac_best)

        if (self.register.get_global_register_value("Vthin_AltFine") == 0 and self.register.get_global_register_value("Vthin_AltCoarse") == 0) or self.register.get_global_register_value("Vthin_AltFine") == 254:
            logging.warning('GDAC reached minimum/maximum value')

        if abs(median_occupancy - self.n_injections_gdac / 2) > 2 * self.max_delta_threshold:
            logging.warning('Global threshold tuning failed. Delta threshold = %f > %f. Vthin_AltCoarse / Vthin_AltFine = %d / %d' % (abs(median_occupancy - self.n_injections_gdac / 2), self.max_delta_threshold, self.register.get_global_register_value("Vthin_AltCoarse"), self.register.get_global_register_value("Vthin_AltFine")))
        else:
            logging.info('Tuned GDAC to Vthin_AltCoarse / Vthin_AltFine = %d / %d' % (self.register.get_global_register_value("Vthin_AltCoarse"), self.register.get_global_register_value("Vthin_AltFine")))

        self.vthin_altfine_best = self.register.get_global_register_value("Vthin_AltFine")
        self.vthin_altcoarse_best = self.register.get_global_register_value("Vthin_AltCoarse")
コード例 #18
0
    def scan(self):
        if not self.plots_filename:
            self.plots_filename = PdfPages(self.output_filename + '.pdf')
            self.close_plots = True
        else:
            self.close_plots = False
        mask_steps = 3
        enable_mask_steps = []

        cal_lvl1_command = self.register.get_commands(
            "CAL")[0] + self.register.get_commands(
                "zeros", length=40)[0] + self.register.get_commands(
                    "LV1")[0] + self.register.get_commands(
                        "zeros", mask_steps=mask_steps)[0]

        self.write_target_charge()
        additional_scan = True
        lastBitResult = np.zeros(
            shape=self.register.get_pixel_register_value("FDAC").shape,
            dtype=self.register.get_pixel_register_value("FDAC").dtype)

        self.set_start_fdac()

        self.tot_mean_best = np.empty(
            shape=(80, 336)
        )  # array to store the best occupancy (closest to Ninjections/2) of the pixel
        self.tot_mean_best.fill(0)
        self.fdac_mask_best = self.register.get_pixel_register_value("FDAC")

        for scan_parameter_value, fdac_bit in enumerate(self.fdac_tune_bits):
            if additional_scan:
                self.set_fdac_bit(fdac_bit)
                logging.info('FDAC setting: bit %d = 1' % fdac_bit)
            else:
                self.set_fdac_bit(fdac_bit, bit_value=0)
                logging.info('FDAC setting: bit %d = 0' % fdac_bit)

            self.write_fdac_config()

            with self.readout(FDAC=scan_parameter_value):
                scan_loop(self,
                          cal_lvl1_command,
                          repeat_command=self.n_injections_fdac,
                          mask_steps=mask_steps,
                          enable_mask_steps=enable_mask_steps,
                          enable_double_columns=None,
                          same_mask_for_all_dc=True,
                          eol_function=None,
                          digital_injection=False,
                          enable_shift_masks=self.enable_shift_masks,
                          disable_shift_masks=self.disable_shift_masks,
                          restore_shift_masks=True,
                          mask=None,
                          double_column_correction=self.pulser_dac_correction)

            self.raw_data_file.append(
                self.fifo_readout.data,
                scan_parameters=self.scan_parameters._asdict())

            col_row_tot = np.column_stack(
                convert_data_array(
                    data_array_from_data_iterable(self.fifo_readout.data),
                    filter_func=is_data_record,
                    converter_func=get_col_row_tot_array_from_data_record_array
                ))
            tot_array = np.histogramdd(col_row_tot,
                                       bins=(80, 336, 16),
                                       range=[[1, 80], [1, 336], [0, 15]])[0]
            tot_mean_array = np.average(
                tot_array, axis=2, weights=range(0, 16)) * sum(range(
                    0, 16)) / self.n_injections_fdac
            select_better_pixel_mask = abs(
                tot_mean_array - self.target_tot) <= abs(self.tot_mean_best -
                                                         self.target_tot)
            pixel_with_too_small_mean_tot_mask = tot_mean_array < self.target_tot
            self.tot_mean_best[select_better_pixel_mask] = tot_mean_array[
                select_better_pixel_mask]

            if self.plot_intermediate_steps:
                plotThreeWay(hist=tot_mean_array.transpose().transpose(),
                             title="Mean ToT (FDAC tuning bit " +
                             str(fdac_bit) + ")",
                             x_axis_title='mean ToT',
                             filename=self.plots_filename,
                             minimum=0,
                             maximum=15)

            fdac_mask = self.register.get_pixel_register_value("FDAC")
            self.fdac_mask_best[select_better_pixel_mask] = fdac_mask[
                select_better_pixel_mask]
            if fdac_bit > 0:
                fdac_mask[pixel_with_too_small_mean_tot_mask] = fdac_mask[
                    pixel_with_too_small_mean_tot_mask] & ~(1 << fdac_bit)
                self.register.set_pixel_register_value("FDAC", fdac_mask)

            if fdac_bit == 0:
                if additional_scan:  # scan bit = 0 with the correct value again
                    additional_scan = False
                    lastBitResult = tot_mean_array.copy()
                    self.fdac_tune_bits.append(
                        0)  # bit 0 has to be scanned twice
                else:
                    fdac_mask[abs(tot_mean_array - self.target_tot) > abs(
                        lastBitResult - self.target_tot
                    )] = fdac_mask[abs(tot_mean_array - self.target_tot) > abs(
                        lastBitResult - self.target_tot)] | (1 << fdac_bit)
                    tot_mean_array[abs(tot_mean_array - self.target_tot) > abs(
                        lastBitResult - self.target_tot)] = lastBitResult[
                            abs(tot_mean_array -
                                self.target_tot) > abs(lastBitResult -
                                                       self.target_tot)]
                    self.tot_mean_best[
                        abs(tot_mean_array - self.target_tot) <= abs(
                            self.tot_mean_best -
                            self.n_injections_fdac / 2)] = tot_mean_array[
                                abs(tot_mean_array - self.target_tot) <= abs(
                                    self.tot_mean_best -
                                    self.n_injections_fdac / 2)]
                    self.fdac_mask_best[
                        abs(tot_mean_array - self.target_tot) <= abs(
                            self.tot_mean_best -
                            self.n_injections_fdac / 2)] = fdac_mask[
                                abs(tot_mean_array - self.target_tot) <= abs(
                                    self.tot_mean_best -
                                    self.n_injections_fdac / 2)]

        self.register.set_pixel_register_value(
            "FDAC", self.fdac_mask_best)  # set value for meta scan
        self.write_fdac_config()
コード例 #19
0
ファイル: scan_hit_delay.py プロジェクト: liuhb08/pyBAR
    def analyze(self):
    #         plsr_dac_slope = self.register.calibration_parameters['C_Inj_High'] * self.register.calibration_parameters['Vcal_Coeff_1']
        plsr_dac_slope = 55.

        # Interpret data and create hit table
        with AnalyzeRawData(raw_data_file=self.output_filename, create_pdf=False) as analyze_raw_data:
            analyze_raw_data.create_occupancy_hist = False  # too many scan parameters to do in ram histograming
            analyze_raw_data.create_hit_table = True
            analyze_raw_data.interpreter.set_warning_output(False)  # a lot of data produces unknown words
            analyze_raw_data.interpret_word_table()
            analyze_raw_data.interpreter.print_summary()

        # Create relative BCID and mean relative BCID histogram for each pixel / injection delay / PlsrDAC setting
        with tb.open_file(self.output_filename + '_analyzed.h5', mode="w") as out_file_h5:
            hists_folder = out_file_h5.create_group(out_file_h5.root, 'PixelHistsMeanRelBcid')
            hists_folder_2 = out_file_h5.create_group(out_file_h5.root, 'PixelHistsRelBcid')
            hists_folder_3 = out_file_h5.create_group(out_file_h5.root, 'PixelHistsTot')
            hists_folder_4 = out_file_h5.create_group(out_file_h5.root, 'PixelHistsMeanTot')
            hists_folder_5 = out_file_h5.create_group(out_file_h5.root, 'HistsTot')

            def store_bcid_histograms(bcid_array, tot_array, tot_pixel_array):
                logging.debug('Store histograms for PlsrDAC ' + str(old_plsr_dac))
                bcid_mean_array = np.average(bcid_array, axis=3, weights=range(0, 16)) * sum(range(0, 16)) / np.sum(bcid_array, axis=3).astype('f4')  # calculate the mean BCID per pixel and scan parameter
                tot_pixel_mean_array = np.average(tot_pixel_array, axis=3, weights=range(0, 16)) * sum(range(0, 16)) / np.sum(tot_pixel_array, axis=3).astype('f4')  # calculate the mean tot per pixel and scan parameter
                bcid_mean_result = np.swapaxes(bcid_mean_array, 0, 1)
                bcid_result = np.swapaxes(bcid_array, 0, 1)
                tot_pixel_result = np.swapaxes(tot_pixel_array, 0, 1)
                tot_mean_pixel_result = np.swapaxes(tot_pixel_mean_array, 0, 1)

                out = out_file_h5.createCArray(hists_folder, name='HistPixelMeanRelBcidPerDelayPlsrDac_%03d' % old_plsr_dac, title='Mean relative BCID hist per pixel and different PlsrDAC delays for PlsrDAC ' + str(old_plsr_dac), atom=tb.Atom.from_dtype(bcid_mean_result.dtype), shape=bcid_mean_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out.attrs.dimensions = 'column, row, injection delay'
                out.attrs.injection_delay_values = injection_delay
                out[:] = bcid_mean_result
                out_2 = out_file_h5.createCArray(hists_folder_2, name='HistPixelRelBcidPerDelayPlsrDac_%03d' % old_plsr_dac, title='Relative BCID hist per pixel and different PlsrDAC delays for PlsrDAC ' + str(old_plsr_dac), atom=tb.Atom.from_dtype(bcid_result.dtype), shape=bcid_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out_2.attrs.dimensions = 'column, row, injection delay, relative bcid'
                out_2.attrs.injection_delay_values = injection_delay
                out_2[:] = bcid_result
                out_3 = out_file_h5.createCArray(hists_folder_3, name='HistPixelTotPerDelayPlsrDac_%03d' % old_plsr_dac, title='Tot hist per pixel and different PlsrDAC delays for PlsrDAC ' + str(old_plsr_dac), atom=tb.Atom.from_dtype(tot_pixel_result.dtype), shape=tot_pixel_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out_3.attrs.dimensions = 'column, row, injection delay'
                out_3.attrs.injection_delay_values = injection_delay
                out_3[:] = tot_pixel_result
                out_4 = out_file_h5.createCArray(hists_folder_4, name='HistPixelMeanTotPerDelayPlsrDac_%03d' % old_plsr_dac, title='Mean tot hist per pixel and different PlsrDAC delays for PlsrDAC ' + str(old_plsr_dac), atom=tb.Atom.from_dtype(tot_mean_pixel_result.dtype), shape=tot_mean_pixel_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out_4.attrs.dimensions = 'column, row, injection delay'
                out_4.attrs.injection_delay_values = injection_delay
                out_4[:] = tot_mean_pixel_result
                out_5 = out_file_h5.createCArray(hists_folder_5, name='HistTotPlsrDac_%03d' % old_plsr_dac, title='Tot histogram for PlsrDAC ' + str(old_plsr_dac), atom=tb.Atom.from_dtype(tot_array.dtype), shape=tot_array.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out_5.attrs.injection_delay_values = injection_delay
                out_5[:] = tot_array

            old_plsr_dac = None

            # Get scan parameters from interpreted file
            with tb.open_file(self.output_filename + '_interpreted.h5', 'r') as in_file_h5:
                scan_parameters_dict = get_scan_parameter(in_file_h5.root.meta_data[:])
                plsr_dac = scan_parameters_dict['PlsrDAC']
                hists_folder._v_attrs.plsr_dac_values = plsr_dac
                hists_folder_2._v_attrs.plsr_dac_values = plsr_dac
                hists_folder_3._v_attrs.plsr_dac_values = plsr_dac
                hists_folder_4._v_attrs.plsr_dac_values = plsr_dac
                injection_delay = scan_parameters_dict[scan_parameters_dict.keys()[1]]  # injection delay par name is unknown and should  be in the inner loop
                scan_parameters = scan_parameters_dict.keys()

            bcid_array = np.zeros((80, 336, len(injection_delay), 16), dtype=np.int16)  # bcid array of actual PlsrDAC
            tot_pixel_array = np.zeros((80, 336, len(injection_delay), 16), dtype=np.int16)  # tot pixel array of actual PlsrDAC
            tot_array = np.zeros((16,), dtype=np.int32)  # tot array of actual PlsrDAC

            logging.info('Store histograms for PlsrDAC values ' + str(plsr_dac))
            progress_bar = progressbar.ProgressBar(widgets=['', progressbar.Percentage(), ' ', progressbar.Bar(marker='*', left='|', right='|'), ' ', progressbar.AdaptiveETA()], maxval=max(plsr_dac) - min(plsr_dac), term_width=80)

            for index, (parameters, hits) in enumerate(get_hits_of_scan_parameter(self.output_filename + '_interpreted.h5', scan_parameters, chunk_size=1.5e7)):
                if index == 0:
                    progress_bar.start()  # start after the event index is created to get reasonable ETA
                actual_plsr_dac, actual_injection_delay = parameters[0], parameters[1]
                column, row, rel_bcid, tot = hits['column'] - 1, hits['row'] - 1, hits['relative_BCID'], hits['tot']
                bcid_array_fast = hist_3d_index(column, row, rel_bcid, shape=(80, 336, 16))
                tot_pixel_array_fast = hist_3d_index(column, row, tot, shape=(80, 336, 16))
                tot_array_fast = hist_1d_index(tot, shape=(16,))

                if old_plsr_dac != actual_plsr_dac:  # Store the data of the actual PlsrDAC value
                    if old_plsr_dac:  # Special case for the first PlsrDAC setting
                        store_bcid_histograms(bcid_array, tot_array, tot_pixel_array)
                        progress_bar.update(old_plsr_dac - min(plsr_dac))
                    # Reset the histrograms for the next PlsrDAC setting
                    bcid_array = np.zeros((80, 336, len(injection_delay), 16), dtype=np.int8)
                    tot_pixel_array = np.zeros((80, 336, len(injection_delay), 16), dtype=np.int8)
                    tot_array = np.zeros((16,), dtype=np.int32)
                    old_plsr_dac = actual_plsr_dac
                injection_delay_index = np.where(np.array(injection_delay) == actual_injection_delay)[0][0]
                bcid_array[:, :, injection_delay_index, :] += bcid_array_fast
                tot_pixel_array[:, :, injection_delay_index, :] += tot_pixel_array_fast
                tot_array += tot_array_fast
            store_bcid_histograms(bcid_array, tot_array, tot_pixel_array)  # save histograms of last PlsrDAC setting
            progress_bar.finish()

        # Take the mean relative BCID histogram of each PlsrDAC value and calculate the delay for each pixel
        with tb.open_file(self.output_filename + '_analyzed.h5', mode="r") as in_file_h5:
            # Create temporary result data structures
            plsr_dac_values = in_file_h5.root.PixelHistsMeanRelBcid._v_attrs.plsr_dac_values
            timewalk = np.zeros(shape=(80, 336, len(plsr_dac_values)), dtype=np.int8)  # result array
            tot = np.zeros(shape=(len(plsr_dac_values),), dtype=np.float16)  # result array
            hit_delay = np.zeros(shape=(80, 336, len(plsr_dac_values)), dtype=np.int8)  # result array
            min_rel_bcid = np.zeros(shape=(80, 336), dtype=np.int8)  # Temp array to make sure that the Scurve from the same BCID is used
            delay_calibration_data = []
            delay_calibration_data_error = []

            # Calculate the minimum BCID. That is chosen to calculate the hit delay. Calculation does not have to work.
            plsr_dac_min = min(plsr_dac_values)
            rel_bcid_min_injection = in_file_h5.get_node(in_file_h5.root.PixelHistsMeanRelBcid, 'HistPixelMeanRelBcidPerDelayPlsrDac_%03d' % plsr_dac_min)
            injection_delays = np.array(rel_bcid_min_injection.attrs.injection_delay_values)
            injection_delay_min = np.where(injection_delays == np.amax(injection_delays))[0][0]
            bcid_min = int(round(np.mean(np.ma.masked_array(rel_bcid_min_injection[:, :, injection_delay_min], np.isnan(rel_bcid_min_injection[:, :, injection_delay_min]))))) - 1

            # Info output with progressbar
            logging.info('Create timewalk info for PlsrDACs ' + str(plsr_dac_values))
            progress_bar = progressbar.ProgressBar(widgets=['', progressbar.Percentage(), ' ', progressbar.Bar(marker='*', left='|', right='|'), ' ', progressbar.AdaptiveETA()], maxval=len(plsr_dac_values), term_width=80)
            progress_bar.start()

            for index, node in enumerate(in_file_h5.root.PixelHistsMeanRelBcid):  # loop over all mean relative BCID hists for all PlsrDAC values
                # Select the S-curves
                pixel_data = node[:, :, :]
                pixel_data_fixed = pixel_data.reshape(pixel_data.shape[0] * pixel_data.shape[1] * pixel_data.shape[2])  # Reshape for interpolation of Nans
                nans, x = np.isnan(pixel_data_fixed), lambda z: z.nonzero()[0]
                pixel_data_fixed[nans] = np.interp(x(nans), x(~nans), pixel_data_fixed[~nans])  # interpolate Nans
                pixel_data_fixed = pixel_data_fixed.reshape(pixel_data.shape[0], pixel_data.shape[1], pixel_data.shape[2])  # Reshape after interpolation of Nans
                pixel_data_round = np.round(pixel_data_fixed)
                pixel_data_round_diff = np.diff(pixel_data_round, axis=2)
                index_sel = np.where(np.logical_and(pixel_data_round_diff > 0., np.isfinite(pixel_data_round_diff)))

                # Temporary result histograms to be filled
                first_scurve_mean = np.zeros(shape=(80, 336), dtype=np.int8)  # the first S-curve in the data for the lowest injection (for time walk)
                second_scurve_mean = np.zeros(shape=(80, 336), dtype=np.int8)  # the second S-curve in the data (to calibrate one inj. delay step)
                a_scurve_mean = np.zeros(shape=(80, 336), dtype=np.int8)  # the mean of the S-curve at a given rel. BCID (for hit delay)

                # Loop over the S-curve means
                for (row_index, col_index, delay_index) in np.column_stack((index_sel)):
                    delay = injection_delays[delay_index]
                    if first_scurve_mean[col_index, row_index] == 0:
                        if delay_index == 0:  # ignore the first index, can be wrong due to nan filling
                            continue
                        if pixel_data_round[row_index, col_index, delay] >= min_rel_bcid[col_index, row_index]:  # make sure to always use the data of the same BCID
                            first_scurve_mean[col_index, row_index] = delay
                            min_rel_bcid[col_index, row_index] = pixel_data_round[row_index, col_index, delay]
                    elif second_scurve_mean[col_index, row_index] == 0 and (delay - first_scurve_mean[col_index, row_index]) > 20:  # minimum distance 10, can otherwise be data 'jitter'
                        second_scurve_mean[col_index, row_index] = delay
                    if pixel_data_round[row_index, col_index, delay] == bcid_min:
                        if a_scurve_mean[col_index, row_index] == 0:
                            a_scurve_mean[col_index, row_index] = delay

                plsr_dac = int(re.search(r'\d+', node.name).group())
                plsr_dac_index = np.where(plsr_dac_values == plsr_dac)[0][0]
                if (np.count_nonzero(first_scurve_mean) - np.count_nonzero(a_scurve_mean)) > 1e3:
                    logging.warning("The common BCID to find the absolute hit delay was set wrong! Hit delay calculation will be wrong.")
                selection = (second_scurve_mean - first_scurve_mean)[np.logical_and(second_scurve_mean > 0, first_scurve_mean < second_scurve_mean)]
                delay_calibration_data.append(np.mean(selection))
                delay_calibration_data_error.append(np.std(selection))
                # Store the actual PlsrDAC data into result hist
                timewalk[:, :, plsr_dac_index] = first_scurve_mean  # Save the plsr delay of first s-curve (for time walk calc.)
                hit_delay[:, :, plsr_dac_index] = a_scurve_mean  # Save the plsr delay of s-curve of fixed rel. BCID (for hit delay calc.)
                progress_bar.update(index)

            for index, node in enumerate(in_file_h5.root.HistsTot):  # loop over tot hist for all PlsrDAC values
                plsr_dac = int(re.search(r'\d+', node.name).group())
                plsr_dac_index = np.where(plsr_dac_values == plsr_dac)[0][0]
                tot_data = node[:]
                tot[plsr_dac_index] = get_mean_from_histogram(tot_data, range(16))

            # Calibrate the step size of the injection delay by the average difference of two Scurves of all pixels
            delay_calibration_mean = np.mean(np.array(delay_calibration_data[2:])[np.isfinite(np.array(delay_calibration_data[2:]))])
            delay_calibration, delay_calibration_error = curve_fit(lambda x, par: (par), injection_delays, delay_calibration_data, p0=delay_calibration_mean, sigma=delay_calibration_data_error, absolute_sigma=True)
            delay_calibration, delay_calibration_error = delay_calibration[0], delay_calibration_error[0][0]

            progress_bar.finish()

        #  Save time walk / hit delay hists
        with tb.open_file(self.output_filename + '_analyzed.h5', mode="r+") as out_file_h5:
            timewalk_result = np.swapaxes(timewalk, 0, 1)
            hit_delay_result = np.swapaxes(hit_delay, 0, 1)
            out = out_file_h5.createCArray(out_file_h5.root, name='HistPixelTimewalkPerPlsrDac', title='Time walk per pixel and PlsrDAC', atom=tb.Atom.from_dtype(timewalk_result.dtype), shape=timewalk_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
            out_2 = out_file_h5.createCArray(out_file_h5.root, name='HistPixelHitDelayPerPlsrDac', title='Hit delay per pixel and PlsrDAC', atom=tb.Atom.from_dtype(hit_delay_result.dtype), shape=hit_delay_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
            out_3 = out_file_h5.createCArray(out_file_h5.root, name='HistTotPerPlsrDac', title='Tot per PlsrDAC', atom=tb.Atom.from_dtype(tot.dtype), shape=tot.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
            out.attrs.dimensions = 'column, row, PlsrDAC'
            out.attrs.delay_calibration = delay_calibration
            out.attrs.delay_calibration_error = delay_calibration_error
            out.attrs.plsr_dac_values = plsr_dac_values
            out_2.attrs.dimensions = 'column, row, PlsrDAC'
            out_2.attrs.delay_calibration = delay_calibration
            out_2.attrs.delay_calibration_error = delay_calibration_error
            out_2.attrs.plsr_dac_values = plsr_dac_values
            out_3.attrs.dimensions = 'PlsrDAC'
            out_3.attrs.plsr_dac_values = plsr_dac_values
            out[:] = timewalk_result
            out_2[:] = hit_delay_result
            out_3[:] = tot

        # Mask the pixels that have non valid data an create plot with the relative time walk for all pixels
        with tb.open_file(self.output_filename + '_analyzed.h5', mode="r") as in_file_h5:
            def plot_hit_delay(hist_3d, charge_values, title, xlabel, ylabel, filename, threshold=None, tot_values=None):
                # Interpolate tot values for second tot axis
                interpolation = interp1d(tot_values, charge_values, kind='slinear', bounds_error=True)
                tot = np.arange(16)
                tot = tot[np.logical_and(tot >= np.amin(tot_values), tot <= np.amax(tot_values))]

                array = np.transpose(hist_3d, axes=(2, 1, 0)).reshape(hist_3d.shape[2], hist_3d.shape[0] * hist_3d.shape[1])
                y = np.mean(array, axis=1)
                y_err = np.std(array, axis=1)

                fig = Figure()
                FigureCanvas(fig)
                ax = fig.add_subplot(111)
                fig.patch.set_facecolor('white')
                ax.grid(True)
                ax.set_xlabel(xlabel)
                ax.set_ylabel(ylabel)
                ax.set_xlim((0, np.amax(charge_values)))
                ax.set_ylim((np.amin(y - y_err), np.amax(y + y_err)))
                ax.plot(charge_values, y, '.-', color='black', label=title)
                if threshold is not None:
                    ax.plot([threshold, threshold], [np.amin(y - y_err), np.amax(y + y_err)], linestyle='--', color='black', label='Threshold\n%d e' % (threshold))
                ax.fill_between(charge_values, y - y_err, y + y_err, color='gray', alpha=0.5, facecolor='gray', label='RMS')
                ax2 = ax.twiny()
                ax2.set_xlabel("ToT")

                ticklab = ax2.xaxis.get_ticklabels()[0]
                trans = ticklab.get_transform()
                ax2.xaxis.set_label_coords(np.amax(charge_values), 1, transform=trans)
                ax2.set_xlim(ax.get_xlim())
                ax2.set_xticks(interpolation(tot))
                ax2.set_xticklabels([str(int(i)) for i in tot])
                ax.text(0.5, 1.07, title, horizontalalignment='center', fontsize=18, transform=ax2.transAxes)
                ax.legend()
                filename.savefig(fig)
            plsr_dac_values = in_file_h5.root.PixelHistsMeanRelBcid._v_attrs.plsr_dac_values
            delay_calibration = in_file_h5.root.HistPixelHitDelayPerPlsrDac._v_attrs.delay_calibration
            charge_values = np.array(plsr_dac_values)[:] * plsr_dac_slope
            hist_timewalk = in_file_h5.root.HistPixelTimewalkPerPlsrDac[:, :, :]
            hist_hit_delay = in_file_h5.root.HistPixelHitDelayPerPlsrDac[:, :, :]
            tot = in_file_h5.root.HistTotPerPlsrDac[:]

            hist_rel_timewalk = np.amax(hist_timewalk, axis=2)[:, :, np.newaxis] - hist_timewalk
            hist_rel_hit_delay = np.mean(hist_hit_delay[:, :, -1]) - hist_hit_delay

            # Create mask and apply for bad pixels
            mask = np.ones(hist_rel_timewalk.shape, dtype=np.int8)
            for node in in_file_h5.root.PixelHistsMeanRelBcid:
                pixel_data = node[:, :, :]
                a = (np.sum(pixel_data, axis=2))
                mask[np.isfinite(a), :] = 0

            hist_rel_timewalk = np.ma.masked_array(hist_rel_timewalk, mask)
            hist_hit_delay = np.ma.masked_array(hist_hit_delay, mask)

            output_pdf = PdfPages(self.output_filename + '.pdf')
            plot_hit_delay(np.swapaxes(hist_rel_timewalk, 0, 1) * 25. / delay_calibration, charge_values=charge_values, title='Time walk', xlabel='Charge [e]', ylabel='Time walk [ns]', filename=output_pdf, threshold=np.amin(charge_values), tot_values=tot)
            plot_hit_delay(np.swapaxes(hist_rel_hit_delay, 0, 1) * 25. / delay_calibration, charge_values=charge_values, title='Hit delay', xlabel='Charge [e]', ylabel='Hit delay [ns]', filename=output_pdf, threshold=np.amin(charge_values), tot_values=tot)
            plot_scurves(np.swapaxes(hist_rel_timewalk, 0, 1), scan_parameters=charge_values, title='Timewalk of the FE-I4', scan_parameter_name='Charge [e]', ylabel='Timewalk [ns]', min_x=0, y_scale=25. / delay_calibration, filename=output_pdf)
            plot_scurves(np.swapaxes(hist_hit_delay[:, :, :], 0, 1), scan_parameters=charge_values, title='Hit delay (T0) with internal charge injection\nof the FE-I4', scan_parameter_name='Charge [e]', ylabel='Hit delay [ns]', min_x=0, y_scale=25. / delay_calibration, filename=output_pdf)

            for i in [0, 1, len(plsr_dac_values) / 4, len(plsr_dac_values) / 2, -1]:  # plot 2d hist at min, 1/4, 1/2, max PlsrDAC setting
                plotThreeWay(hist_rel_timewalk[:, :, i] * 25. / delay_calibration, title='Time walk at %.0f e' % (charge_values[i]), x_axis_title='Time walk [ns]', filename=output_pdf)
                plotThreeWay(hist_hit_delay[:, :, i] * 25. / delay_calibration, title='Hit delay (T0) with internal charge injection at %.0f e' % (charge_values[i]), x_axis_title='Hit delay [ns]', minimum=np.amin(hist_hit_delay[:, :, i]), maximum=np.amax(hist_hit_delay[:, :, i]), filename=output_pdf)
            output_pdf.close()
コード例 #20
0
ファイル: tune_fdac.py プロジェクト: liuhb08/pyBAR
    def scan(self):
        if not self.plots_filename:
            self.plots_filename = PdfPages(self.output_filename + '.pdf')
            self.close_plots = True
        else:
            self.close_plots = False
        mask_steps = 3
        enable_mask_steps = []

        cal_lvl1_command = self.register.get_commands("CAL")[0] + self.register.get_commands("zeros", length=40)[0] + self.register.get_commands("LV1")[0] + self.register.get_commands("zeros", mask_steps=mask_steps)[0]

        self.write_target_charge()
        additional_scan = True
        lastBitResult = np.zeros(shape=self.register.get_pixel_register_value("FDAC").shape, dtype=self.register.get_pixel_register_value("FDAC").dtype)

        self.set_start_fdac()

        self.tot_mean_best = np.empty(shape=(80, 336))  # array to store the best occupancy (closest to Ninjections/2) of the pixel
        self.tot_mean_best.fill(0)
        self.fdac_mask_best = self.register.get_pixel_register_value("FDAC")

        for scan_parameter_value, fdac_bit in enumerate(self.fdac_tune_bits):
            if additional_scan:
                self.set_fdac_bit(fdac_bit)
                logging.info('FDAC setting: bit %d = 1', fdac_bit)
            else:
                self.set_fdac_bit(fdac_bit, bit_value=0)
                logging.info('FDAC setting: bit %d = 0', fdac_bit)

            self.write_fdac_config()

            with self.readout(FDAC=scan_parameter_value, reset_sram_fifo=True, fill_buffer=True, clear_buffer=True, callback=self.handle_data):
                scan_loop(self, cal_lvl1_command, repeat_command=self.n_injections_fdac, mask_steps=mask_steps, enable_mask_steps=enable_mask_steps, enable_double_columns=None, same_mask_for_all_dc=True, eol_function=None, digital_injection=False, enable_shift_masks=self.enable_shift_masks, disable_shift_masks=self.disable_shift_masks, restore_shift_masks=True, mask=None, double_column_correction=self.pulser_dac_correction)

            col_row_tot = np.column_stack(convert_data_array(data_array_from_data_iterable(self.fifo_readout.data), filter_func=is_data_record, converter_func=get_col_row_tot_array_from_data_record_array))
            tot_array = np.histogramdd(col_row_tot, bins=(80, 336, 16), range=[[1, 80], [1, 336], [0, 15]])[0]
            tot_mean_array = np.average(tot_array, axis=2, weights=range(0, 16)) * sum(range(0, 16)) / self.n_injections_fdac
            select_better_pixel_mask = abs(tot_mean_array - self.target_tot) <= abs(self.tot_mean_best - self.target_tot)
            pixel_with_too_small_mean_tot_mask = tot_mean_array < self.target_tot
            self.tot_mean_best[select_better_pixel_mask] = tot_mean_array[select_better_pixel_mask]

            if self.plot_intermediate_steps:
                plotThreeWay(hist=tot_mean_array.transpose().transpose(), title="Mean ToT (FDAC tuning bit " + str(fdac_bit) + ")", x_axis_title='mean ToT', filename=self.plots_filename, minimum=0, maximum=15)

            fdac_mask = self.register.get_pixel_register_value("FDAC")
            self.fdac_mask_best[select_better_pixel_mask] = fdac_mask[select_better_pixel_mask]
            if fdac_bit > 0:
                fdac_mask[pixel_with_too_small_mean_tot_mask] = fdac_mask[pixel_with_too_small_mean_tot_mask] & ~(1 << fdac_bit)
                self.register.set_pixel_register_value("FDAC", fdac_mask)

            if fdac_bit == 0:
                if additional_scan:  # scan bit = 0 with the correct value again
                    additional_scan = False
                    lastBitResult = tot_mean_array.copy()
                    self.fdac_tune_bits.append(0)  # bit 0 has to be scanned twice
                else:
                    fdac_mask[abs(tot_mean_array - self.target_tot) > abs(lastBitResult - self.target_tot)] = fdac_mask[abs(tot_mean_array - self.target_tot) > abs(lastBitResult - self.target_tot)] | (1 << fdac_bit)
                    tot_mean_array[abs(tot_mean_array - self.target_tot) > abs(lastBitResult - self.target_tot)] = lastBitResult[abs(tot_mean_array - self.target_tot) > abs(lastBitResult - self.target_tot)]
                    self.tot_mean_best[abs(tot_mean_array - self.target_tot) <= abs(self.tot_mean_best - self.n_injections_fdac / 2)] = tot_mean_array[abs(tot_mean_array - self.target_tot) <= abs(self.tot_mean_best - self.n_injections_fdac / 2)]
                    self.fdac_mask_best[abs(tot_mean_array - self.target_tot) <= abs(self.tot_mean_best - self.n_injections_fdac / 2)] = fdac_mask[abs(tot_mean_array - self.target_tot) <= abs(self.tot_mean_best - self.n_injections_fdac / 2)]

        self.register.set_pixel_register_value("FDAC", self.fdac_mask_best)  # set value for meta scan
        self.write_fdac_config()
コード例 #21
0
ファイル: calibrate_threshold.py プロジェクト: liuhb08/pyBAR
def create_threshold_calibration(scan_base_file_name, create_plots=True):  # Create calibration function, can be called stand alone
    def analyze_raw_data_file(file_name):
        if os.path.isfile(file_name[:-3] + '_interpreted.h5'):  # skip analysis if already done
            logging.warning('Analyzed data file ' + file_name + ' already exists. Skip analysis for this file.')
        else:
            with AnalyzeRawData(raw_data_file=file_name, create_pdf=False) as analyze_raw_data:
                analyze_raw_data.create_tot_hist = False
                analyze_raw_data.create_tot_pixel_hist = False
                analyze_raw_data.create_fitted_threshold_hists = True
                analyze_raw_data.create_threshold_mask = True
                analyze_raw_data.interpreter.set_warning_output(False)  # RX errors would fill the console
                analyze_raw_data.interpret_word_table()

    def store_calibration_data_as_table(out_file_h5, mean_threshold_calibration, mean_threshold_rms_calibration, threshold_calibration, parameter_values):
        logging.info("Storing calibration data in a table...")
        filter_table = tb.Filters(complib='blosc', complevel=5, fletcher32=False)
        mean_threshold_calib_table = out_file_h5.createTable(out_file_h5.root, name='MeanThresholdCalibration', description=data_struct.MeanThresholdCalibrationTable, title='mean_threshold_calibration', filters=filter_table)
        threshold_calib_table = out_file_h5.createTable(out_file_h5.root, name='ThresholdCalibration', description=data_struct.ThresholdCalibrationTable, title='threshold_calibration', filters=filter_table)
        for column in range(80):
            for row in range(336):
                for parameter_value_index, parameter_value in enumerate(parameter_values):
                    threshold_calib_table.row['column'] = column
                    threshold_calib_table.row['row'] = row
                    threshold_calib_table.row['parameter_value'] = parameter_value
                    threshold_calib_table.row['threshold'] = threshold_calibration[column, row, parameter_value_index]
                    threshold_calib_table.row.append()
        for parameter_value_index, parameter_value in enumerate(parameter_values):
            mean_threshold_calib_table.row['parameter_value'] = parameter_value
            mean_threshold_calib_table.row['mean_threshold'] = mean_threshold_calibration[parameter_value_index]
            mean_threshold_calib_table.row['threshold_rms'] = mean_threshold_rms_calibration[parameter_value_index]
            mean_threshold_calib_table.row.append()
        threshold_calib_table.flush()
        mean_threshold_calib_table.flush()
        logging.info("done")

    def store_calibration_data_as_array(out_file_h5, mean_threshold_calibration, mean_threshold_rms_calibration, threshold_calibration, parameter_name, parameter_values):
        logging.info("Storing calibration data in an array...")
        filter_table = tb.Filters(complib='blosc', complevel=5, fletcher32=False)
        mean_threshold_calib_array = out_file_h5.createCArray(out_file_h5.root, name='HistThresholdMeanCalibration', atom=tb.Atom.from_dtype(mean_threshold_calibration.dtype), shape=mean_threshold_calibration.shape, title='mean_threshold_calibration', filters=filter_table)
        mean_threshold_calib_rms_array = out_file_h5.createCArray(out_file_h5.root, name='HistThresholdRMSCalibration', atom=tb.Atom.from_dtype(mean_threshold_calibration.dtype), shape=mean_threshold_calibration.shape, title='mean_threshold_rms_calibration', filters=filter_table)
        threshold_calib_array = out_file_h5.createCArray(out_file_h5.root, name='HistThresholdCalibration', atom=tb.Atom.from_dtype(threshold_calibration.dtype), shape=threshold_calibration.shape, title='threshold_calibration', filters=filter_table)
        mean_threshold_calib_array[:] = mean_threshold_calibration
        mean_threshold_calib_rms_array[:] = mean_threshold_rms_calibration
        threshold_calib_array[:] = threshold_calibration
        mean_threshold_calib_array.attrs.dimensions = ['column', 'row', parameter_name]
        mean_threshold_calib_rms_array.attrs.dimensions = ['column', 'row', parameter_name]
        threshold_calib_array.attrs.dimensions = ['column', 'row', parameter_name]
        mean_threshold_calib_array.attrs.scan_parameter_values = parameter_values
        mean_threshold_calib_rms_array.attrs.scan_parameter_values = parameter_values
        threshold_calib_array.attrs.scan_parameter_values = parameter_values

        logging.info("done")

    def mask_columns(pixel_array, ignore_columns):
        idx = np.array(ignore_columns) - 1  # from FE to Array columns
        m = np.zeros_like(pixel_array)
        m[:, idx] = 1
        return np.ma.masked_array(pixel_array, m)

    raw_data_files = analysis_utils.get_data_file_names_from_scan_base(scan_base_file_name, filter_file_words=['interpreted', 'calibration_calibration'])
    first_scan_base_file_name = scan_base_file_name if isinstance(scan_base_file_name, basestring) else scan_base_file_name[0]  # multilpe scan_base_file_names for multiple runs

    with tb.openFile(first_scan_base_file_name + '.h5', mode="r") as in_file_h5:  # deduce scan parameters from the first (and often only) scan base file name
        ignore_columns = in_file_h5.root.configuration.run_conf[:][np.where(in_file_h5.root.configuration.run_conf[:]['name'] == 'ignore_columns')]['value'][0]
        parameter_name = in_file_h5.root.configuration.run_conf[:][np.where(in_file_h5.root.configuration.run_conf[:]['name'] == 'scan_parameters')]['value'][0]
        ignore_columns = ast.literal_eval(ignore_columns)
        parameter_name = ast.literal_eval(parameter_name)[1][0]

    calibration_file = first_scan_base_file_name + '_calibration'

    for raw_data_file in raw_data_files:  # analyze each raw data file, not using multithreading here, it is already used in s-curve fit
        analyze_raw_data_file(raw_data_file)

    files_per_parameter = analysis_utils.get_parameter_value_from_file_names([file_name[:-3] + '_interpreted.h5' for file_name in raw_data_files], parameter_name, unique=True, sort=True)

    logging.info("Create calibration from data")
    mean_threshold_calibration = np.empty(shape=(len(raw_data_files),), dtype='<f8')
    mean_threshold_rms_calibration = np.empty(shape=(len(raw_data_files),), dtype='<f8')
    threshold_calibration = np.empty(shape=(80, 336, len(raw_data_files)), dtype='<f8')

    if create_plots:
        logging.info('Saving calibration plots in: %s', calibration_file + '.pdf')
        output_pdf = PdfPages(calibration_file + '.pdf')

    progress_bar = progressbar.ProgressBar(widgets=['', progressbar.Percentage(), ' ', progressbar.Bar(marker='*', left='|', right='|'), ' ', progressbar.AdaptiveETA()], maxval=len(files_per_parameter.items()), term_width=80)
    progress_bar.start()
    parameter_values = []
    for index, (analyzed_data_file, parameters) in enumerate(files_per_parameter.items()):
        parameter_values.append(parameters.values()[0][0])
        with tb.openFile(analyzed_data_file, mode="r") as in_file_h5:
            occupancy_masked = mask_columns(pixel_array=in_file_h5.root.HistOcc[:], ignore_columns=ignore_columns)  # mask the not scanned columns for analysis and plotting
            thresholds_masked = mask_columns(pixel_array=in_file_h5.root.HistThresholdFitted[:], ignore_columns=ignore_columns)
            if create_plots:
                plotThreeWay(hist=thresholds_masked, title='Threshold Fitted for ' + parameters.keys()[0] + ' = ' + str(parameters.values()[0][0]), filename=output_pdf)
                plsr_dacs = analysis_utils.get_scan_parameter(meta_data_array=in_file_h5.root.meta_data[:])['PlsrDAC']
                plot_scurves(occupancy_hist=occupancy_masked, scan_parameters=plsr_dacs, scan_parameter_name='PlsrDAC', filename=output_pdf)
            # fill the calibration data arrays
            mean_threshold_calibration[index] = np.ma.mean(thresholds_masked)
            mean_threshold_rms_calibration[index] = np.ma.std(thresholds_masked)
            threshold_calibration[:, :, index] = thresholds_masked.T
        progress_bar.update(index)
    progress_bar.finish()

    with tb.openFile(calibration_file + '.h5', mode="w") as out_file_h5:
        store_calibration_data_as_array(out_file_h5=out_file_h5, mean_threshold_calibration=mean_threshold_calibration, mean_threshold_rms_calibration=mean_threshold_rms_calibration, threshold_calibration=threshold_calibration, parameter_name=parameter_name, parameter_values=parameter_values)
        store_calibration_data_as_table(out_file_h5=out_file_h5, mean_threshold_calibration=mean_threshold_calibration, mean_threshold_rms_calibration=mean_threshold_rms_calibration, threshold_calibration=threshold_calibration, parameter_values=parameter_values)

    if create_plots:
        plot_scatter(x=parameter_values, y=mean_threshold_calibration, title='Threshold calibration', x_label=parameter_name, y_label='Mean threshold', log_x=False, filename=output_pdf)
        plot_scatter(x=parameter_values, y=mean_threshold_calibration, title='Threshold calibration', x_label=parameter_name, y_label='Mean threshold', log_x=True, filename=output_pdf)
        output_pdf.close()
コード例 #22
0
def histogram_tdc_hits(input_file_hits, hit_selection_conditions, event_status_select_mask, event_status_condition, calibation_file=None, max_tdc=2000):
    for condition in hit_selection_conditions:
        logging.info('Histogram tdc hits with %s' % condition)

    def get_charge(max_tdc, tdc_calibration_values, tdc_pixel_calibration):  # return the charge from calibration
        charge_calibration = np.zeros(shape=(80, 336, max_tdc))
        for column in range(80):
            for row in range(336):
                actual_pixel_calibration = tdc_pixel_calibration[column, row, :]
                if np.any(actual_pixel_calibration != 0):
                    interpolation = interp1d(x=actual_pixel_calibration, y=tdc_calibration_values, kind='slinear', bounds_error=False, fill_value=0)
                    charge_calibration[column, row, :] = interpolation(np.arange(max_tdc))
        return charge_calibration

    with tb.openFile(input_file_hits, mode="r") as in_hit_file_h5:
        cluster_hit_table = in_hit_file_h5.root.ClusterHits

        shape_tdc_hist, shape_mean_tdc_hist = (80, 336, max_tdc), (80, 336)
        shape_tdc_timestamp_hist, shape_mean_tdc_timestamp_hist = (80, 336, 256), (80, 336)
        tdc_hists_per_condition = [np.zeros(shape=shape_tdc_hist, dtype=np.uint16) for _ in hit_selection_conditions] if hit_selection_conditions else []
        tdc_timestamp_hists_per_condition = [np.zeros(shape=shape_tdc_timestamp_hist, dtype=np.uint16) for _ in hit_selection_conditions] if hit_selection_conditions else []
        mean_tdc_hists_per_condition = [np.zeros(shape=shape_mean_tdc_hist, dtype=np.uint16) for _ in hit_selection_conditions] if hit_selection_conditions else []
        mean_tdc_timestamp_hists_per_condition = [np.zeros(shape=shape_mean_tdc_timestamp_hist, dtype=np.uint16) for _ in hit_selection_conditions] if hit_selection_conditions else []

        n_hits_per_condition = [0 for _ in range(len(hit_selection_conditions) + 2)]  # 1/2 condition are all hits / hits of goode events

        for cluster_hits, _ in analysis_utils.data_aligned_at_events(cluster_hit_table, chunk_size=2e7):
            n_hits_per_condition[0] += cluster_hits.shape[0]
            selected_events_cluster_hits = cluster_hits[(cluster_hits['event_status'] & event_status_select_mask) == event_status_condition]
            n_hits_per_condition[1] += selected_events_cluster_hits.shape[0]
            for index, condition in enumerate(hit_selection_conditions):
                selected_cluster_hits = analysis_utils.select_hits(selected_events_cluster_hits, condition)
                n_hits_per_condition[2 + index] += selected_cluster_hits.shape[0]
                column, row, tdc = selected_cluster_hits['column'] - 1, selected_cluster_hits['row'] - 1, selected_cluster_hits['TDC']
                tdc_hists_per_condition[index] += analysis_utils.hist_3d_index(column, row, tdc, shape=shape_tdc_hist)
                mean_tdc_hists_per_condition[index] = np.average(tdc_hists_per_condition[index], axis=2, weights=range(0, max_tdc)) * np.sum(np.arange(0, max_tdc)) / tdc_hists_per_condition[index].sum(axis=2)
                tdc_timestamp = selected_cluster_hits['TDC_time_stamp']
                tdc_timestamp_hists_per_condition[index] += analysis_utils.hist_3d_index(column, row, tdc_timestamp, shape=shape_tdc_timestamp_hist)
                mean_tdc_timestamp_hists_per_condition[index] = np.average(tdc_timestamp_hists_per_condition[index], axis=2, weights=range(0, shape_tdc_timestamp_hist[2])) * np.sum(np.arange(0, shape_tdc_timestamp_hist[2])) / tdc_timestamp_hists_per_condition[index].sum(axis=2)

        plotThreeWay(mean_tdc_hists_per_condition[0].T * 1.5625, title='Mean TDC, condition 1', filename='test_tdc.pdf')  # , minimum=50, maximum=250)
        plotThreeWay(mean_tdc_timestamp_hists_per_condition[0].T * 1.5625, title='Mean TDC delay, condition 1', filename='test_tdc_ts.pdf', minimum=20, maximum=60)

        with tb.open_file(input_file_hits[:-3] + '_tdc_hists.h5', mode="w") as out_file_h5:
            for index, condition in enumerate(hit_selection_conditions):
                tdc_hist_result = np.swapaxes(tdc_hists_per_condition[index], 0, 1)
                tdc_timestamp_hist_result = np.swapaxes(tdc_timestamp_hists_per_condition[index], 0, 1)
                out = out_file_h5.createCArray(out_file_h5.root, name='HistPixelTdcCondition_%d' % index, title='Hist PixelTdc with %s' % condition, atom=tb.Atom.from_dtype(tdc_hist_result.dtype), shape=tdc_hist_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out_2 = out_file_h5.createCArray(out_file_h5.root, name='HistPixelTdcTimestampCondition_%d' % index, title='Hist PixelTdcTimestamp with %s' % condition, atom=tb.Atom.from_dtype(tdc_timestamp_hist_result.dtype), shape=tdc_timestamp_hist_result.shape, filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                out.attrs.dimensions = 'column, row, TDC value'
                out.attrs.condition = condition
                out.attrs.tdc_values = range(max_tdc)
                out_2.attrs.dimensions = 'column, row, TDC time stamp value'
                out_2.attrs.condition = condition
                out_2.attrs.tdc_values = range(shape_tdc_timestamp_hist[2])
                out[:] = tdc_hist_result
                out_2[:] = tdc_timestamp_hist_result

    with PdfPages(input_file_hits[:-3] + '_calibrated_tdc_hists.pdf') as output_pdf:
        logging.info('Create hits selection efficiency histogram for %d conditions' % (len(hit_selection_conditions) + 2))
        labels = ['All Hits', 'Hits of\ngood events']
        for condition in hit_selection_conditions:
            condition = re.sub('[&]', '\n', condition)
            condition = re.sub('[()]', '', condition)
            labels.append(condition)
        plt.bar(range(len(n_hits_per_condition)), n_hits_per_condition, align='center')
        plt.xticks(range(len(n_hits_per_condition)), labels, size=8)
        plt.title('Number of hits for different cuts')
        plt.ylabel('#')
        plt.grid()
        for x, y in zip(np.arange(len(n_hits_per_condition)), n_hits_per_condition):
            plt.annotate('%d' % (float(y) / float(n_hits_per_condition[0]) * 100.) + r'%', xy=(x, y / 2.), xycoords='data', color='grey', size=15)
        output_pdf.savefig()

        if calibation_file is not None:
            with tb.openFile(calibation_file, mode="r") as in_file_h5:
                tdc_calibration = in_file_h5.root.HitOrCalibration[:, :, 1:, 1]
                tdc_calibration_values = in_file_h5.root.HitOrCalibration.attrs.scan_parameter_values[1:]

            charge = get_charge(max_tdc, tdc_calibration_values, tdc_calibration)
            plt.clf()

            with tb.openFile(input_file_hits[:-3] + '_calibrated_tdc_hists.h5', mode="w") as out_file_h5:
                logging.info('Create corrected TDC histogram for %d conditions' % len(hit_selection_conditions))
                for index, condition in enumerate(hit_selection_conditions):
                    c_str = re.sub('[&]', '\n', condition)
                    x, y = [], []
                    for column in range(0, 80, 1):
                        for row in range(0, 336, 1):
                            if tdc_hists_per_condition[0][column, row, :].sum() < analysis_configuration['min_pixel_hits']:
                                continue
                            x.extend(charge[column, row, :].ravel())
                            y.extend(tdc_hists_per_condition[index][column, row, :].ravel())
                    x, y, _ = analysis_utils.get_profile_histogram(np.array(x) * 55., np.array(y), n_bins=120)
                    result = np.zeros(shape=(x.shape[0], ), dtype=[("x", np.float), ("y", np.float)])
                    result['x'], result['y'] = x, y
                    actual_tdc_hist_table = out_file_h5.create_table(out_file_h5.root, name='TdcHistTableCondition%d' % index, description=result.dtype, title='TDC histogram', filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False))
                    actual_tdc_hist_table.append(result)
                    actual_tdc_hist_table.attrs.condition = condition
                    if index == 0:
                        normalization = 100. / np.amax(y)
                    plt.plot(x, y * normalization, '.', label=c_str)
                # Plot hists into one plot
                plt.plot([27.82 * 55., 27.82 * 55.], [0, 100], label='Threshold %d e' % (28.82 * 55.), linewidth=2)
                plt.ylim((0, 100))
                plt.legend(loc=0, prop={'size': 12})
                plt.xlabel('Charge [e]')
                plt.ylabel('#')
                plt.grid()
                output_pdf.savefig()
コード例 #23
0
ファイル: tune_tdac.py プロジェクト: themperek/pyBAR
    def scan(self):
        if not self.plots_filename:
            self.plots_filename = PdfPages(self.output_filename + '.pdf')
            self.close_plots = True
        else:
            self.close_plots = False
        mask_steps = 3
        enable_mask_steps = []
        cal_lvl1_command = self.register.get_commands(
            "CAL")[0] + self.register.get_commands(
                "zeros", length=40)[0] + self.register.get_commands(
                    "LV1")[0] + self.register.get_commands(
                        "zeros", mask_steps=mask_steps)[0]

        self.write_target_threshold()
        additional_scan = True
        lastBitResult = np.zeros(
            shape=self.register.get_pixel_register_value("TDAC").shape,
            dtype=self.register.get_pixel_register_value("TDAC").dtype)

        self.set_start_tdac()

        self.occupancy_best = np.empty(
            shape=(80, 336)
        )  # array to store the best occupancy (closest to Ninjections/2) of the pixel
        self.occupancy_best.fill(self.n_injections_tdac)
        self.tdac_mask_best = self.register.get_pixel_register_value("TDAC")

        for scan_parameter_value, tdac_bit in enumerate(self.tdac_tune_bits):
            if additional_scan:
                self.set_tdac_bit(tdac_bit)
                logging.info('TDAC setting: bit %d = 1' % tdac_bit)
            else:
                self.set_tdac_bit(tdac_bit, bit_value=0)
                logging.info('TDAC setting: bit %d = 0' % tdac_bit)

            self.write_tdac_config()

            with self.readout(TDAC=scan_parameter_value):
                scan_loop(self,
                          cal_lvl1_command,
                          repeat_command=self.n_injections_tdac,
                          mask_steps=mask_steps,
                          enable_mask_steps=enable_mask_steps,
                          enable_double_columns=None,
                          same_mask_for_all_dc=True,
                          eol_function=None,
                          digital_injection=False,
                          enable_shift_masks=self.enable_shift_masks,
                          disable_shift_masks=self.disable_shift_masks,
                          restore_shift_masks=True,
                          mask=None,
                          double_column_correction=self.pulser_dac_correction)

            self.raw_data_file.append(
                self.fifo_readout.data,
                scan_parameters=self.scan_parameters._asdict())

            occupancy_array, _, _ = np.histogram2d(*convert_data_array(
                data_array_from_data_iterable(self.fifo_readout.data),
                filter_func=is_data_record,
                converter_func=get_col_row_array_from_data_record_array),
                                                   bins=(80, 336),
                                                   range=[[1, 80], [1, 336]])
            select_better_pixel_mask = abs(occupancy_array -
                                           self.n_injections_tdac / 2) <= abs(
                                               self.occupancy_best -
                                               self.n_injections_tdac / 2)
            pixel_with_too_high_occupancy_mask = occupancy_array > self.n_injections_tdac / 2
            self.occupancy_best[select_better_pixel_mask] = occupancy_array[
                select_better_pixel_mask]

            if self.plot_intermediate_steps:
                plotThreeWay(occupancy_array.transpose(),
                             title="Occupancy (TDAC tuning bit " +
                             str(tdac_bit) + ")",
                             x_axis_title='Occupancy',
                             filename=self.plots_filename,
                             maximum=self.n_injections_tdac)

            tdac_mask = self.register.get_pixel_register_value("TDAC")
            self.tdac_mask_best[select_better_pixel_mask] = tdac_mask[
                select_better_pixel_mask]

            if tdac_bit > 0:
                tdac_mask[pixel_with_too_high_occupancy_mask] = tdac_mask[
                    pixel_with_too_high_occupancy_mask] & ~(1 << tdac_bit)
                self.register.set_pixel_register_value("TDAC", tdac_mask)

            if tdac_bit == 0:
                if additional_scan:  # scan bit = 0 with the correct value again
                    additional_scan = False
                    lastBitResult = occupancy_array.copy()
                    self.tdac_tune_bits.append(
                        0)  # bit 0 has to be scanned twice
                else:
                    tdac_mask[
                        abs(occupancy_array - self.n_injections_tdac / 2) >
                        abs(lastBitResult -
                            self.n_injections_tdac / 2)] = tdac_mask[
                                abs(occupancy_array - self.n_injections_tdac /
                                    2) > abs(lastBitResult -
                                             self.n_injections_tdac / 2)] | (
                                                 1 << tdac_bit)
                    occupancy_array[
                        abs(occupancy_array - self.n_injections_tdac / 2) >
                        abs(lastBitResult -
                            self.n_injections_tdac / 2)] = lastBitResult[
                                abs(occupancy_array - self.n_injections_tdac /
                                    2) > abs(lastBitResult -
                                             self.n_injections_tdac / 2)]
                    self.occupancy_best[
                        abs(occupancy_array - self.n_injections_tdac / 2) <=
                        abs(self.occupancy_best -
                            self.n_injections_tdac / 2)] = occupancy_array[
                                abs(occupancy_array - self.n_injections_tdac /
                                    2) <= abs(self.occupancy_best -
                                              self.n_injections_tdac / 2)]
                    self.tdac_mask_best[
                        abs(occupancy_array - self.n_injections_tdac / 2) <=
                        abs(self.occupancy_best -
                            self.n_injections_tdac / 2)] = tdac_mask[
                                abs(occupancy_array - self.n_injections_tdac /
                                    2) <= abs(self.occupancy_best -
                                              self.n_injections_tdac / 2)]

        self.register.set_pixel_register_value(
            "TDAC", self.tdac_mask_best)  # set value for meta scan
        self.write_tdac_config()