コード例 #1
0
ファイル: run_jgif.py プロジェクト: plin1112/pybel
def upload_cbn_dir(dir_path, manager):
    """Uploads CBN data to edge store

    :param str dir_path: Directory full of CBN JGIF files
    :param pybel.Manager manager:
    """
    t = time.time()

    for jfg_path in os.listdir(dir_path):
        if not jfg_path.endswith('.jgf'):
            continue

        path = os.path.join(dir_path, jfg_path)

        log.info('opening %s', path)

        with open(path) as f:
            cbn_jgif_dict = json.load(f)

        graph = pybel.from_cbn_jgif(cbn_jgif_dict)

        out_path = os.path.join(dir_path, jfg_path.replace('.jgf', '.bel'))
        with open(out_path, 'w') as o:
            pybel.to_bel_script(graph, o)

        strip_annotations(graph)
        enrich_pubmed_citations(manager=manager, graph=graph)
        pybel.to_database(graph, manager=manager)

        log.info('')

    log.info('done in %.2f', time.time() - t)
コード例 #2
0
def main(directory: str):
    """Make hetionet exports."""
    path = os.path.join(directory, 'hetionet.bel.nodelink.json.gz')
    if not os.path.exists(path):
        graph = get_hetionet()
        to_nodelink_gz(graph, path)
    else:
        click.echo('loading pickle from {}'.format(path))
        graph = from_nodelink_gz(path)

    output_bel_gz_path = os.path.join(directory, 'hetionet.bel.gz')
    if not os.path.exists(output_bel_gz_path):
        click.echo('outputting whole hetionet as BEL GZ to {}'.format(output_bel_gz_path))
        to_bel_script_gz(graph, output_bel_gz_path, use_identifiers=True)

    output_graphdati_jsonl_gz_path = os.path.join(directory, 'hetionet.bel.graphdati.jsonl.gz')
    if not os.path.exists(output_graphdati_jsonl_gz_path):
        click.echo('outputting whole hetionet as BEL GraphDati JSONL GZ to {}'.format(output_graphdati_jsonl_gz_path))
        to_graphdati_jsonl_gz(graph, output_graphdati_jsonl_gz_path, use_identifiers=True)

    output_graphdati_gz_path = os.path.join(directory, 'hetionet.bel.graphdati.json.gz')
    if not os.path.exists(output_graphdati_gz_path):
        click.echo('outputting whole hetionet as BEL GraphDati JSON GZ to {}'.format(output_graphdati_gz_path))
        to_graphdati_gz(graph, output_graphdati_gz_path, use_identifiers=True)

    summary_tsv_path = os.path.join(directory, 'hetionet_summary.tsv')
    if not os.path.exists(summary_tsv_path):
        click.echo('getting metaedges')
        rows = []
        keep_keys = set()
        for value in get_metaedge_to_key(graph).values():
            u, v, key = choice(list(value))
            keep_keys.add(key)
            d = graph[u][v][key]
            bel = edge_to_bel(u, v, d, use_identifiers=True)
            rows.append((key[:8], bel))

        df = pd.DataFrame(rows, columns=['key', 'bel'])
        df.to_csv(summary_tsv_path, sep='\t', index=False)

        non_sample_edges = [
            (u, v, k, d)
            for u, v, k, d in tqdm(graph.edges(keys=True, data=True), desc='Getting non-sample edges to remove')
            if k not in keep_keys
        ]
        click.echo('Removing non-sample edges')
        graph.remove_edges_from(non_sample_edges)
        graph.remove_nodes_from(list(nx.isolates(graph)))

        sample_bel_path = os.path.join(directory, 'hetionet_sample.bel')
        click.echo('outputting sample hetionet in BEL to {}'.format(sample_bel_path))
        to_bel_script(graph, sample_bel_path, use_identifiers=True)

        sample_graphdati_path = os.path.join(directory, 'hetionet_sample.bel.graphdati.json')
        click.echo('outputting sample hetionet in BEL to {}'.format(sample_bel_path))
        to_graphdati_file(graph, sample_graphdati_path, use_identifiers=True, indent=2)
コード例 #3
0
def write_neurommsig_bel(
    file: TextIO,
    df: pd.DataFrame,
    disease: str,
    nift_values: Mapping[str, str],
) -> None:
    """Write the NeuroMMSigDB excel sheet to BEL.

    :param file: a file or file-like that can be writen to
    :param df:
    :param disease:
    :param nift_values: a dictionary of lower-cased to normal names in NIFT
    """
    graph = get_neurommsig_bel(df, disease, nift_values)
    pybel.to_bel_script(graph, file)
コード例 #4
0
ファイル: assembler.py プロジェクト: rodriguezmDNA/indra
    def save_model(self, path, output_format=None):
        """Save the :class:`pybel.BELGraph` using one of the outputs from
        :py:mod:`pybel`

        Parameters
        ----------
        path : str
            The path to output to
        output_format : Optional[str]
            Output format as ``cx``, ``pickle``, ``json`` or defaults to ``bel``
        """
        if output_format == 'pickle':
            pybel.to_pickle(self.model, path)
        else:
            with open(path, 'w') as fh:
                if output_format == 'json':
                    pybel.to_nodelink_file(self.model, fh)
                elif output_format == 'cx':
                    pybel.to_cx_file(self.model, fh)
                else: # output_format == 'bel':
                    pybel.to_bel_script(self.model, fh)