def __init__(self, robot, render=False): # print("WalkerBase::__init__ start") self.camera_x = 0 self.walk_target_x = 1e3 # kilometer away self.walk_target_y = 0 self.stateId = -1 MJCFBaseBulletEnv.__init__(self, robot, render)
def __init__(self, render=False): self.robot = Kuka() MJCFBaseBulletEnv.__init__(self, self.robot, render) self._cam_dist = 1.2 self._cam_yaw = 90 #30 self._cam_roll = 0 self._cam_pitch = -70 #-30 if config.wtcheat: self._render_width = 1 self._render_height = 1 else: self._render_width = 320 self._render_height = 240 self._cam_pos = [0, 0, 0.3] #[0, 0, 0.4] self.setCamera() self.eyes = {} self.reward_func = DefaultRewardFunc self.robot.used_objects = ["table", "tomato", "mustard", "orange"] self.set_eye("eye") self.goal = Goal(retina=self.observation_space.spaces[ self.robot.ObsSpaces.GOAL].sample() * 0) self.goals = None self.goal_idx = -1
def __init__(self, robot, render=False, max_num_steps=1000): # print("WalkerBase::__init__ start") self.max_num_steps = max_num_steps self._step_counter = 0 self.camera_x = 0 self.walk_target_x = 1e3 # kilometer away self.walk_target_y = 0 self.stateId = -1 MJCFBaseBulletEnv.__init__(self, robot, render)
def __init__(self, robot, render=False): # print("WalkerBase::__init__ start") MJCFBaseBulletEnv.__init__(self, robot, render) self.camera_x = 0 self.walk_target_x = 1e3 # kilometer away self.walk_target_y = 0 self.stateId = -1 self._projectM = None self._param_init_camera_width = 320 self._param_init_camera_height = 200 self._param_camera_distance = 2.0
def __init__(self, render=False): self.robot = Hand() MJCFBaseBulletEnv.__init__(self, self.robot, render) self._cam_dist = 1.2 self._cam_yaw = 30 self._cam_roll = 0 self._cam_pitch = -30 self._render_width = 320 self._render_height = 240 self._cam_pos = [0, 0, .4] self.setCamera() self.eyes = {} self.reward_func = DefaultRewardFunc self.robot.used_objects = []
def __init__(self, render=False): self.robot = Kuka() MJCFBaseBulletEnv.__init__(self, self.robot, render) self._cam_dist = 1.2 self._cam_yaw = 30 self._cam_roll = 0 self._cam_pitch = -30 self._render_width = 320 self._render_height = 240 self._cam_pos = [0,0,.4] self.setCamera() self.eyes = {} self.reward_func = DefaultRewardFunc self.robot.used_objects = ["table", "tomato", "mustard", "cube"] self.set_eye("eye") self.goal = Goal(retina=self.observation_space.spaces[ self.robot.ObsSpaces.GOAL].sample()*0) # Set default goals dataset path # # The goals dataset is basically a list of real_robots.envs.env.Goal # objects which are stored using : # # np.savez_compressed( # "path.npy.npz", # list_of_goals) # self.goals_dataset_path = os.path.join( real_robots.getPackageDataPath(), "goals_dataset.npy.npz") self.goals = None self.goal_idx = -1
def __init__(self): self.robot = InvertedPendulumModified() MJCFBaseBulletEnv.__init__(self, self.robot) self.stateId = -1
def __init__(self, render=False): self.robot = FixedReacher() MJCFBaseBulletEnv.__init__(self, self.robot, render)
def __init__(self): self.robot = PendulumSwingup() MJCFBaseBulletEnv.__init__(self, self.robot) self.stateId = -1
def __init__(self, render=False, objects=3, action_type='joints', additional_obs=True): self.robot = Kuka(additional_obs, objects) MJCFBaseBulletEnv.__init__(self, self.robot, render) self.joints_space = self.robot.action_space self.cartesian_space = spaces.Box( low=np.array([-0.25, -0.5, 0.40, -1, -1, -1, -1]), high=np.array([0.25, 0.5, 0.60, 1, 1, 1, 1]), dtype=float) self.macro_space = spaces.Box( low=np.array([[-0.25, -0.5], [-0.25, -0.5]]), high=np.array([[0.05, 0.5], [0.05, 0.5]]), dtype=float) self.gripper_space = spaces.Box(low=0, high=np.pi/2, shape=(2,), dtype=float) if action_type == 'joints': self.action_space = spaces.Dict({ "joint_command": self.joints_space, "render": spaces.MultiBinary(1)}) self.step = self.step_joints elif action_type == 'cartesian': self.action_space = spaces.Dict({ "cartesian_command": self.cartesian_space, "gripper_command": self.gripper_space, "render": spaces.MultiBinary(1)}) self.step = self.step_cartesian self.requested_coords = None self.requested_orient = None self.last_ik = None elif action_type == 'macro_action': self.action_space = spaces.Dict({ "macro_action": self.macro_space, "render": spaces.MultiBinary(1)}) self.step = self.step_macro self.requested_action = None else: raise ValueError("action_type must be one 'joints', 'cartesian' " "or 'macro_action'") self._cam_dist = 1.2 self._cam_yaw = 30 self._cam_roll = 0 self._cam_pitch = -30 self._render_width = 320 self._render_height = 240 self._cam_pos = [0, 0, .4] self.setCamera() self.eyes = {} self.reward_func = DefaultRewardFunc self.set_eye("eye") self.goal = Goal(retina=self.observation_space.spaces[ self.robot.ObsSpaces.GOAL].sample()*0) # Set default goals dataset path # # The goals dataset is basically a list of real_robots.envs.env.Goal # objects which are stored using : # # np.savez_compressed( # "path.npy.npz", # list_of_goals) # self.goals_dataset_path = os.path.join( real_robots.getPackageDataPath(), "goals_dataset.npy.npz") self.goals = None self.goal_idx = -1 self.no_retina = self.observation_space.spaces[ self.robot.ObsSpaces.RETINA].sample()*0 self.no_depth = self.observation_space.spaces[ self.robot.ObsSpaces.DEPTH].sample()*0 if additional_obs: self.get_observation = self.get_observation_extended self.no_mask = self.observation_space.spaces[ self.robot.ObsSpaces.MASK].sample()*0
def __init__(self): self.robot = BeakerBot() MJCFBaseBulletEnv.__init__(self, self.robot) self.stateId=-1