def save_inverse_reachability(robot, arm, grasp_type, tool_link, gripper_from_base_list): # TODO: store value of torso and roll joint for the IK database. Sample the roll joint. # TODO: hash the pr2 urdf as well filename = IR_FILENAME.format(grasp_type, arm) path = get_database_file(filename) data = { 'filename': filename, 'robot': get_body_name(robot), 'grasp_type': grasp_type, 'arm': arm, 'torso': get_group_conf(robot, 'torso'), 'carry_conf': get_carry_conf(arm, grasp_type), 'tool_link': tool_link, 'ikfast': is_ik_compiled(), 'gripper_from_base': gripper_from_base_list, } write_pickle(path, data) if has_gui(): handles = [] for gripper_from_base in gripper_from_base_list: handles.extend( draw_point(point_from_pose(gripper_from_base), color=(1, 0, 0))) wait_for_user() return path
def save_experiments(experiments_dir, experiments): if experiments_dir is None: return None data_path = os.path.join(experiments_dir, 'experiments.pk{}'.format(get_python_version())) write_pickle(data_path, experiments) print('Saved', data_path) return data_path
def save_learner(data_dir, learner): if data_dir is None: return False #domain = learner.func #data_dir = os.path.join(MODEL_DIRECTORY, domain.name) #name = learner.name name = get_label(learner.algorithm) mkdir(data_dir) learner_path = os.path.join(data_dir, '{}.pk{}'.format(name, get_python_version())) print('Saved', learner_path) write_pickle(learner_path, learner) return True
def create_inverse_reachability(robot, body, table, arm, grasp_type, num_samples=500): link = get_gripper_link(robot, arm) movable_joints = get_movable_joints(robot) default_conf = get_joint_positions(robot, movable_joints) gripper_from_base_list = [] grasps = GET_GRASPS[grasp_type](body) while len(gripper_from_base_list) < num_samples: box_pose = sample_placement(body, table) set_pose(body, box_pose) grasp_pose = random.choice(grasps) gripper_pose = multiply(box_pose, invert(grasp_pose)) set_joint_positions(robot, movable_joints, default_conf) base_conf = next(uniform_pose_generator(robot, gripper_pose)) set_base_values(robot, base_conf) if pairwise_collision(robot, table): continue conf = inverse_kinematics(robot, link, gripper_pose) if (conf is None) or pairwise_collision(robot, table): continue gripper_from_base = multiply(invert(get_link_pose(robot, link)), get_pose(robot)) gripper_from_base_list.append(gripper_from_base) print('{} / {}'.format(len(gripper_from_base_list), num_samples)) filename = IR_FILENAME.format(grasp_type, arm) path = get_database_file(filename) data = { 'filename': filename, 'robot': get_body_name(robot), 'grasp_type': grasp_type, 'arg': arm, 'carry_conf': get_carry_conf(arm, grasp_type), 'gripper_link': link, 'gripper_from_base': gripper_from_base_list, } write_pickle(path, data) return path
def main(): parser = argparse.ArgumentParser() parser.add_argument('paths', nargs='*', help='Paths to the data.') #parser.add_argument('-a', '--active', type=int, default=0, # None # help='The number of active samples to collect') parser.add_argument('-l', '--learner', default=None, help='Path to the learner that should be used') parser.add_argument('-n', '--num_trials', type=int, default=100, help='The number of samples to collect') parser.add_argument('-s', '--save', action='store_true', help='Whether to save the learners') parser.add_argument('-r', '--num_rounds', type=int, default=1, help='The number of rounds to collect') #parser.add_argument('-t', '--num_train', type=int, default=None, # help='The size of the training set') args = parser.parse_args() # TODO: be careful that paging isn't altering the data # TODO: don't penalize if the learner identifies that it can't make a good prediction # TODO: use a different set of randomized parameters for train and test include_none = False serial = is_darwin() #training_sizes = inclusive_range(50, 500, 25) #training_sizes = inclusive_range(25, 100, 5) #training_sizes = inclusive_range(25, 100, 5) training_sizes = inclusive_range(10, 50, 5) #training_sizes = inclusive_range(100, 1000, 100) #training_sizes = [20] #training_sizes = [1500] #kernels = ['RBF', 'Matern52', 'MLP'] kernels = ['MLP'] #hyperparameters = [None] #hyperparameters = [True] hyperparameters = [True, None] # None, query_type = BEST # BEST | CONFIDENT | REJECTION | ACTIVE # type of query used to evaluate the learner is_adaptive = False max_test = 50 # #alphas = np.linspace(0.0, 0.9, num=5, endpoint=True) alphas = [0.0, .8, .9, .99] #alphas = [None] # Use the default (i.e. GP parameters) use_vars = [True] binary = False split = UNIFORM # BALANCED # Omitting failed labels is okay because they will never be executed algorithms = [] #algorithms += [(Algorithm(BATCH_GP, kernel=kernel, hyperparameters=hype, use_var=use_var), [num_train]) # for num_train, kernel, hype, use_var in product(training_sizes, kernels, hyperparameters, use_vars)] algorithms += [(Algorithm(STRADDLE_GP, kernel, hype, use_var), training_sizes) for kernel, hype, use_var in product(kernels, hyperparameters, use_vars)] #algorithms += [(Algorithm(rf_model, p_explore=None, use_var=use_var), [num_train]) # for rf_model, num_train, use_var in product(RF_MODELS, training_sizes, use_vars)] #algorithms += [(Algorithm(nn_model, p_explore=None), [num_train]) # for nn_model, num_train in product(NN_MODELS, training_sizes)] #algorithms += [(Algorithm(RANDOM), None), (Algorithm(DESIGNED), None)] print('Algorithms:', algorithms) print('Split:', split) trials_per_round = sum(1 if train_sizes is None else (train_sizes[-1] - train_sizes[0] + len(train_sizes)) for _, train_sizes in algorithms) num_experiments = args.num_rounds*trials_per_round date_name = datetime.datetime.now().strftime(DATE_FORMAT) size_str = '[{},{}]'.format(training_sizes[0], training_sizes[-1]) #size_str = '-'.join(map(str, training_sizes)) experiments_name = '{}_r={}_t={}_n={}'.format(date_name, args.num_rounds, size_str, args.num_trials) #'19-08-09_21-44-58_r=5_t=[10,150]_n=1'# #experiments_name = 't={}'.format(args.num_rounds) # TODO: could include OS and username if desired domain = load_data(args.paths) print() print(domain) X, Y, W = domain.get_data(include_none=include_none) print('Total number of examples:', len(X)) if binary: # NN can fit perfectly when binary # Binary seems to be outperforming w/o Y = threshold_scores(Y) max_train = len(X) - max_test #min(max([0] + [active_sizes[0] for _, active_sizes in algorithms # if active_sizes is not None]), len(X)) #parameters = { # 'include None': include_none, # 'binary': binary, # 'split': split, #} print('Name:', experiments_name) print('Experiments:', num_experiments) print('Max train:', max_train) print('Include None:', include_none) print('Examples: n={}, d={}'.format(*X.shape)) print('Binary:', binary) print('Estimated hours:', num_experiments * SEC_PER_EXPERIMENT / HOURS_TO_SECS) user_input('Begin?') # TODO: residual learning for sim to real transfer # TODO: can always be conservative and add sim negative examples # TODO: combine all data to write in one folder data_dir = os.path.join(DATA_DIRECTORY, domain.name) # EXPERIMENT_DIRECTORY experiments_dir = os.path.join(data_dir, experiments_name) mkdir(experiments_dir) start_time = time.time() experiments = [] for round_idx in range(args.num_rounds): round_dir = os.path.join(data_dir, experiments_name, str(round_idx)) mkdir(round_dir) seed = hash(time.time()) train_test_file = os.path.join(round_dir, 'data.pk3') if not os.path.exists(train_test_file): X_train, Y_train, X_test, Y_test = split_data(X, Y, split, max_train) X_test, Y_test = X_test[:max_test], Y_test[:max_test] write_pickle(train_test_file, (X_train, Y_train, X_test, Y_test)) else: X_train, Y_train, X_test, Y_test = read_pickle(train_test_file) print('Train examples:', X_train.shape) print('Test examples:', X_test.shape) # TODO: need to be super careful when running with multiple contexts for algorithm, active_sizes in algorithms: # active_sizes = [first #trainingdata selected from X_train, #active exploration + #trainingdata] print(SEPARATOR) print('Round: {} | {} | Seed: {} | Sizes: {}'.format(round_idx, algorithm, seed, active_sizes)) # TODO: allow keyboard interrupt if active_sizes is None: learner = algorithm.name active_size = None train_confusion = None experiments.append(evaluate_learner(domain, seed, train_confusion, X_test, Y_test, algorithm, learner, active_size, args.num_trials, alphas, serial)) else: # [10 20 25] take first 10 samples from X_train to train the model, 10 samples chosen actively # sequentially + evaluate model, 5 samples chosen actively sequentially + evaluate model # Could always keep around all the examples and retrain # TODO: segfaults when this runs in parallel # TODO: may be able to retrain in parallel if I set OPENBLAS_NUM_THREADS learner_prior_nx = 0 ''' if algorithm.hyperparameters: if domain.skill == 'pour': learner_file = '/Users/ziw/ltamp_pr2/data/pour_19-06-13_00-59-21/19-08-09_19-30-01_r=10_t=[50,400]_n=1/{}/gp_active_mlp_true_true.pk3'.format( round_idx) elif domain.skill == 'scoop': learner_file = '/Users/ziw/ltamp_pr2/data/scoop_19-06-10_20-16-59_top-diameter/19-08-09_19-34-56_r=10_t=[50,400]_n=1/{}/gp_active_mlp_true_true.pk3'.format( round_idx) learner = read_pickle(learner_file) learner_prior_nx = learner.nx learner.retrain(newx=X_train[:active_sizes[0]], newy=Y_train[:active_sizes[0], None]) else: ''' learner, train_confusion = create_learner(domain, X_train, Y_train, split, algorithm, num_train=active_sizes[0], query_type=query_type, is_adaptive=is_adaptive) if algorithm.name == STRADDLE_GP: X_select, Y_select = X_train[active_sizes[0]:], Y_train[active_sizes[0]:] for active_size in active_sizes: num_active = active_size - learner.nx + learner_prior_nx# learner.nx is len(learner.xx) print('\nRound: {} | {} | Seed: {} | Size: {} | Active: {}'.format( round_idx, algorithm, seed, active_size, num_active)) if algorithm.name == STRADDLE_GP: X_select, Y_select = active_learning_discrete(learner, num_active, X_select, Y_select) #if args.save: save_learner(round_dir, learner) experiments.append(evaluate_learner(domain, seed, None, X_test, Y_test, algorithm, learner, active_size, args.num_trials, alphas, serial)) save_experiments(experiments_dir, experiments) print(SEPARATOR) if experiments: save_experiments(experiments_dir, experiments) plot_experiments(domain, experiments_name, experiments_dir, experiments, include_none=False) #include_none=include_none) print('Experiments:', experiments_dir) print('Total experiments:', len(experiments)) print('Total hours:', elapsed_time(start_time) / HOURS_TO_SECS)
def train_parallel(args, n=1): from extrusion.run import plan_extrusion assert SKIP_PERCENTAGE == 0 initial_time = time.time() problems = sorted(set(enumerate_problems()) - set(EXCLUDE)) #problems = ['four-frame'] #problems = ['simple_frame', 'topopt-101_tiny', 'topopt-100_S1_03-14-2019_w_layer'] algorithms = list(ALGORITHMS) if args.disable: for algorithm in LOOKAHEAD_ALGORITHMS: if algorithm in algorithms: algorithms.remove(algorithm) #algorithms = ['regression'] heuristics = HEURISTICS #heuristics = DISTANCE_HEURISTICS + COST_HEURISTICS seeds = list(range(args.num)) if n is None: n = len(seeds) groups = list(chunks(seeds, n=n)) print('Chunks: {}'.format(len(groups))) print('Problems ({}): {}'.format(len(problems), problems)) #problems = [path for path in problems if 'simple_frame' in path] print('Algorithms ({}): {}'.format(len(algorithms), algorithms)) print('Heuristics ({}): {}'.format(len(heuristics), heuristics)) jobs = [[ Configuration(seed, problem, algorithm, heuristic, args.max_time, args.cfree, args.disable, args.stiffness, args.motions, args.ee_only) for seed, algorithm, heuristic in product( group, algorithms, heuristics) ] for problem, group in product(problems, groups)] # TODO: separate out the algorithms again # TODO: print the size per job print('Jobs: {}'.format(len(jobs))) serial = is_darwin() available_cores = cpu_count() num_cores = max(1, min(1 if serial else available_cores - 4, len(jobs))) print('Max Cores:', available_cores) print('Serial:', serial) print('Using Cores:', num_cores) date = datetime.datetime.now().strftime(DATE_FORMAT) filename = '{}.pk{}'.format(date, get_python_version()) path = os.path.join(EXPERIMENTS_DIR, filename) print('Data path:', path) user_input('Begin?') start_time = time.time() timeouts = 0 pool = Pool(processes=num_cores) # , initializer=mute) generator = pool.imap_unordered(plan_extrusion, jobs, chunksize=1) results = [] while True: # TODO: randomly sort instead last_time = time.time() try: for config, data in generator.next(): # timeout=2 * args.max_time) results.append((config, data)) print('{}/{} completed | {:.3f} seconds | timeouts: {} | {}'. format(len(results), len(jobs), elapsed_time(start_time), timeouts, datetime.datetime.now().strftime(DATE_FORMAT))) print(config, data) if results: write_pickle(path, results) print('Saved', path) except StopIteration: break # except TimeoutError: # # TODO: record this as a failure? Nothing is saved though... # timeouts += 1 # #traceback.print_exc() # print('Error! Timed out after {:.3f} seconds'.format(elapsed_time(last_time))) # break # This kills all jobs # #continue # This repeats jobs until success print('Total time:', elapsed_time(initial_time)) return results
def main(): parser = argparse.ArgumentParser() parser.add_argument('trainsize', default=2000, type=int, help='training set size') parser.add_argument('expid', default=1, type=int, help='experiment ID') parser.add_argument( 'beta_lambda', type=float, default=0.9, help='lambda parameter for computing beta from best beta') parser.add_argument('sample_strategy_id', default=1, type=int) # 1, 2, 3 parser.add_argument( 'paths', default=[os.path.join(get_data_dir('pour'), 'trials_n=10000.json')], nargs='*', help='Paths to the data.') parser.add_argument('-u', '--use_hyper', action='store_true', help='When enabled, use existing hyper parameter.') parser.add_argument('-o', '--use_obstacle', action='store_true', help='When enabled, no obstacle is used in the scene.') args = parser.parse_args() beta_lambda = args.beta_lambda sample_strategy = SAMPLE_STRATEGIES[args.sample_strategy_id] global SEED SEED = args.expid set_seed(SEED) n_train_tasks = 50 n_test_tasks = 20 train_tasks_seeds = get_seeds(n_train_tasks) test_tasks_seeds = get_seeds(n_test_tasks) print('loading data') domain = load_data(args.paths) data = domain.create_dataset(include_none=True, binary=False) data.shuffle() X, Y, W = data.get_data() print('finished obtaining x y data') n_train = args.trainsize X = X[:n_train] Y = Y[:n_train] print('initializing ActiveGP with #datapoints = {}'.format(len(X))) hype = None if 'pour' in args.paths[0] and args.use_hyper: hype = POUR_MLP_HYPERPARAM_3000 elif 'scoop' in args.paths[0] and args.use_hyper: hype = SCOOP_MLP_HYPERPARAM_3000 learner = ActiveGP(domain, initx=X, inity=Y, hyperparameters=hype, sample_time_limit=60, beta_lambda=beta_lambda) learner.retrain(num_restarts=10) exp_file = 'tasklengthscale_sampling_trainsize={}_beta_lambdda={}_strategy_{}_obs_{}_expid_{}.pk3'.format( len(X), beta_lambda, args.sample_strategy_id, int(args.use_obstacle), args.expid) exp_dirname = os.path.dirname(args.paths[0]) if args.use_hyper: exp_dirname = os.path.join(exp_dirname, 'default_hyper/') mkdir(exp_dirname) exp_file = os.path.join(exp_dirname, exp_file) print('saving results to ', exp_file) results = [] if sample_strategy != DIVERSELK: n_train_tasks = 0 # no need to train prev_tasklengthscale = None for i in range(n_train_tasks + 1): test_results = [] print('task_lengthscal = {}'.format(learner.task_lengthscale)) print('================BEGIN TESTING==============') if prev_tasklengthscale is not None and ( learner.task_lengthscale == prev_tasklengthscale).all(): test_results = results[-1][1] else: for j in range(n_test_tasks): if sample_strategy == DIVERSELK: test_sample_strategy = DIVERSE else: test_sample_strategy = sample_strategy seed = test_tasks_seeds[j] test_result = eval_task_with_seed( domain, seed, learner, sample_strategy=test_sample_strategy, obstacle=args.use_obstacle) test_results.append(test_result) prev_tasklengthscale = learner.task_lengthscale.copy() if i != n_train_tasks: seed = train_tasks_seeds[i] train_result = eval_task_with_seed(domain, seed, learner, sample_strategy=sample_strategy, obstacle=args.use_obstacle) else: train_result = None results.append((train_result, test_results)) write_pickle(exp_file, (results, SEED, train_tasks_seeds, test_tasks_seeds))
def save_experiments(data_path, experiments): if data_path is None: return None write_pickle(data_path, experiments) print('Saved experiments:', data_path) return data_path