def test_complex_infinity_can_build_callables_successfully(): """Test that functions that containing complex infinity can be built with codegen.""" mod = Model(C_FE_DBF, ['C'], 'DIAMOND_A4') mod_vars = [v.N, v.P, v.T] + mod.site_fractions # Test builds functions only, since functions takes about 1 second to run. # Both lambda and llvm backends take a few seconds to build the derivatives # and are probably unnecessary to test. assert zoo in list(mod.GM.atoms()) build_functions(mod.GM, mod_vars, include_obj=True, include_grad=False, include_hess=False) int_cons = mod.get_internal_constraints() build_constraint_functions(mod_vars, int_cons)
def test_build_functions_options(): """The correct SymEngine backend can be chosen for build_functions""" mod = Model(ALNIPT_DBF, ['AL'], 'LIQUID') int_cons = mod.get_internal_constraints() backend = 'lambda' fs_lambda = build_functions(mod.GM, mod.GM.free_symbols, include_obj=True, func_options={'backend': backend}, include_grad=True, grad_options={'backend': backend}, include_hess=True, hess_options={'backend': backend}) assert isinstance(fs_lambda.func, LambdaDouble) assert isinstance(fs_lambda.grad, LambdaDouble) assert isinstance(fs_lambda.hess, LambdaDouble) cfs_lambda = build_constraint_functions(mod.GM.free_symbols, int_cons, func_options={'backend': backend}, jac_options={'backend': backend}, hess_options={'backend': backend}) assert isinstance(cfs_lambda.cons_func, LambdaDouble) assert isinstance(cfs_lambda.cons_jac, LambdaDouble) assert isinstance(cfs_lambda.cons_hess, LambdaDouble) backend = 'llvm' fs_llvm = build_functions(mod.GM, mod.GM.free_symbols, include_obj=True, func_options={'backend': backend}, include_grad=True, grad_options={'backend': backend}, include_hess=True, hess_options={'backend': backend}) print(fs_llvm.func) print(fs_lambda.func) assert isinstance(fs_llvm.func, LLVMDouble) assert isinstance(fs_llvm.grad, LLVMDouble) assert isinstance(fs_llvm.hess, LLVMDouble) cfs_llvm = build_constraint_functions(mod.GM.free_symbols, int_cons, func_options={'backend': backend}, jac_options={'backend': backend}, hess_options={'backend': backend}) assert isinstance(cfs_llvm.cons_func, LLVMDouble) assert isinstance(cfs_llvm.cons_jac, LLVMDouble) assert isinstance(cfs_llvm.cons_hess, LLVMDouble)
def build_callables(dbf, comps, phases, models, parameter_symbols=None, output='GM', build_gradients=True, build_hessians=False, additional_statevars=None): """ Create a compiled callables dictionary. Parameters ---------- dbf : Database A Database object comps : list List of component names phases : list List of phase names models : dict Dictionary of {phase_name: Model subclass} parameter_symbols : list, optional List of string or SymPy Symbols that will be overridden in the callables. output : str, optional Output property of the particular Model to sample. Defaults to 'GM' build_gradients : bool, optional Whether or not to build gradient functions. Defaults to True. build_hessians : bool, optional Whether or not to build Hessian functions. Defaults to False. additional_statevars : set, optional State variables to include in the callables that may not be in the models (e.g. from conditions) verbose : bool, optional Print the name of the phase when its callables are built Returns ------- callables : dict Dictionary of keyword argument callables to pass to equilibrium. Maps {'output' -> {'function' -> {'phase_name' -> AutowrapFunction()}}. Notes ----- *All* the state variables used in calculations must be specified. If these are not specified as state variables of the models (e.g. often the case for v.N), then it must be supplied by the additional_statevars keyword argument. Examples -------- >>> from pycalphad import Database, equilibrium, variables as v >>> from pycalphad.codegen.callables import build_callables >>> from pycalphad.core.utils import instantiate_models >>> dbf = Database('AL-NI.tdb') >>> comps = ['AL', 'NI', 'VA'] >>> phases = ['LIQUID', 'AL3NI5', 'AL3NI2', 'AL3NI'] >>> models = instantiate_models(dbf, comps, phases) >>> callables = build_callables(dbf, comps, phases, models, additional_statevars={v.P, v.T, v.N}) >>> 'GM' in callables.keys() True >>> 'massfuncs' in callables['GM'] True >>> conditions = {v.P: 101325, v.T: 2500, v.X('AL'): 0.2} >>> equilibrium(dbf, comps, phases, conditions, callables=callables) """ additional_statevars = set(additional_statevars) if additional_statevars is not None else set() parameter_symbols = parameter_symbols if parameter_symbols is not None else [] parameter_symbols = sorted([wrap_symbol(x) for x in parameter_symbols], key=str) comps = sorted(unpack_components(dbf, comps)) pure_elements = get_pure_elements(dbf, comps) _callables = { 'massfuncs': {}, 'massgradfuncs': {}, 'masshessfuncs': {}, 'callables': {}, 'grad_callables': {}, 'hess_callables': {}, 'internal_cons': {}, 'internal_jac': {}, 'internal_cons_hess': {}, 'mp_cons': {}, 'mp_jac': {}, } state_variables = get_state_variables(models=models) state_variables |= additional_statevars if state_variables != {v.T, v.P, v.N}: warnings.warn("State variables in `build_callables` are not {{N, P, T}}, " "but {}. Be sure you know what you are doing. " "State variables can be added with the `additional_statevars` " "argument.".format(state_variables)) state_variables = sorted(state_variables, key=str) for name in phases: mod = models[name] site_fracs = mod.site_fractions try: out = getattr(mod, output) except AttributeError: raise AttributeError('Missing Model attribute {0} specified for {1}' .format(output, mod.__class__)) # Build the callables of the output # Only force undefineds to zero if we're not overriding them undefs = {x for x in out.free_symbols if not isinstance(x, v.StateVariable)} - set(parameter_symbols) undef_vals = repeat(0., len(undefs)) out = out.xreplace(dict(zip(undefs, undef_vals))) build_output = build_functions(out, tuple(state_variables + site_fracs), parameters=parameter_symbols, include_grad=build_gradients, include_hess=build_hessians) cf, gf, hf = build_output.func, build_output.grad, build_output.hess _callables['callables'][name] = cf _callables['grad_callables'][name] = gf _callables['hess_callables'][name] = hf # Build the callables for mass # TODO: In principle, we should also check for undefs in mod.moles() mcf, mgf, mhf = zip(*[build_functions(mod.moles(el), state_variables + site_fracs, include_obj=True, include_grad=build_gradients, include_hess=build_hessians, parameters=parameter_symbols) for el in pure_elements]) _callables['massfuncs'][name] = mcf _callables['massgradfuncs'][name] = mgf _callables['masshessfuncs'][name] = mhf return {output: _callables}
def build_callables(dbf, comps, phases, models, parameter_symbols=None, output='GM', build_gradients=True, build_hessians=False, additional_statevars=None): """ Create a compiled callables dictionary. Parameters ---------- dbf : Database A Database object comps : list List of component names phases : list List of phase names models : dict Dictionary of {phase_name: Model subclass} parameter_symbols : list, optional List of string or SymPy Symbols that will be overridden in the callables. output : str, optional Output property of the particular Model to sample. Defaults to 'GM' build_gradients : bool, optional Whether or not to build gradient functions. Defaults to True. build_hessians : bool, optional Whether or not to build Hessian functions. Defaults to False. additional_statevars : set, optional State variables to include in the callables that may not be in the models (e.g. from conditions) verbose : bool, optional Print the name of the phase when its callables are built Returns ------- callables : dict Dictionary of keyword argument callables to pass to equilibrium. Maps {'output' -> {'function' -> {'phase_name' -> AutowrapFunction()}}. Notes ----- *All* the state variables used in calculations must be specified. If these are not specified as state variables of the models (e.g. often the case for v.N), then it must be supplied by the additional_statevars keyword argument. Examples -------- >>> from pycalphad import Database, equilibrium, variables as v >>> from pycalphad.codegen.callables import build_callables >>> from pycalphad.core.utils import instantiate_models >>> dbf = Database('AL-NI.tdb') >>> comps = ['AL', 'NI', 'VA'] >>> phases = ['LIQUID', 'AL3NI5', 'AL3NI2', 'AL3NI'] >>> models = instantiate_models(dbf, comps, phases) >>> callables = build_callables(dbf, comps, phases, models, additional_statevars={v.P, v.T, v.N}) >>> 'GM' in callables.keys() True >>> 'massfuncs' in callables['GM'] True >>> conditions = {v.P: 101325, v.T: 2500, v.X('AL'): 0.2} >>> equilibrium(dbf, comps, phases, conditions, callables=callables) """ additional_statevars = set( additional_statevars) if additional_statevars is not None else set() parameter_symbols = parameter_symbols if parameter_symbols is not None else [] parameter_symbols = sorted([wrap_symbol(x) for x in parameter_symbols], key=str) comps = sorted(unpack_components(dbf, comps)) pure_elements = get_pure_elements(dbf, comps) _callables = { 'massfuncs': {}, 'massgradfuncs': {}, 'masshessfuncs': {}, 'callables': {}, 'grad_callables': {}, 'hess_callables': {}, 'internal_cons_func': {}, 'internal_cons_jac': {}, 'internal_cons_hess': {}, 'multiphase_cons_func': {}, 'multiphase_cons_jac': {}, 'multiphase_cons_hess': {} } state_variables = get_state_variables(models=models) state_variables |= additional_statevars if state_variables != {v.T, v.P, v.N}: warnings.warn( "State variables in `build_callables` are not {{N, P, T}}, but {}. This can lead to incorrectly " "calculated values if the state variables used to call the generated functions do not match the " "state variables used to create them. State variables can be added with the " "`additional_statevars` argument.".format(state_variables)) state_variables = sorted(state_variables, key=str) for name in phases: mod = models[name] site_fracs = mod.site_fractions try: out = getattr(mod, output) except AttributeError: raise AttributeError( 'Missing Model attribute {0} specified for {1}'.format( output, mod.__class__)) # Build the callables of the output # Only force undefineds to zero if we're not overriding them undefs = { x for x in out.free_symbols if not isinstance(x, v.StateVariable) } - set(parameter_symbols) undef_vals = repeat(0., len(undefs)) out = out.xreplace(dict(zip(undefs, undef_vals))) build_output = build_functions(out, tuple(state_variables + site_fracs), parameters=parameter_symbols, include_grad=build_gradients, include_hess=build_hessians) cf, gf, hf = build_output.func, build_output.grad, build_output.hess _callables['callables'][name] = cf _callables['grad_callables'][name] = gf _callables['hess_callables'][name] = hf # Build the callables for mass # TODO: In principle, we should also check for undefs in mod.moles() mcf, mgf, mhf = zip(*[ build_functions(mod.moles(el), state_variables + site_fracs, include_obj=True, include_grad=build_gradients, include_hess=build_hessians, parameters=parameter_symbols) for el in pure_elements ]) _callables['massfuncs'][name] = mcf _callables['massgradfuncs'][name] = mgf _callables['masshessfuncs'][name] = mhf return {output: _callables}
def build_callables(dbf, comps, phases, model=None, parameters=None, callables=None, output='GM', build_gradients=True, verbose=False): """ Create dictionaries of callable dictionaries and PhaseRecords. Parameters ---------- dbf : Database A Database object comps : list List of component names phases : list List of phase names model : dict or type Dictionary of {phase_name: Model subclass} or a type corresponding to a Model subclass. Defaults to ``Model``. parameters : dict, optional Maps SymPy Symbol to numbers, for overriding the values of parameters in the Database. callables : dict, optional Pre-computed callables output : str Output property of the particular Model to sample build_gradients : bool Whether or not to build gradient functions. Defaults to True. verbose : bool Print the name of the phase when its callables are built Returns ------- callables : dict Dictionary of keyword argument callables to pass to equilibrium. Example ------- >>> dbf = Database('AL-NI.tdb') >>> comps = ['AL', 'NI', 'VA'] >>> phases = ['FCC_L12', 'BCC_B2', 'LIQUID', 'AL3NI5', 'AL3NI2', 'AL3NI'] >>> callables = build_callables(dbf, comps, phases) >>> equilibrium(dbf, comps, phases, conditions, **callables) """ parameters = parameters if parameters is not None else {} if len(parameters) > 0: param_symbols, param_values = zip(*[(key, val) for key, val in sorted( parameters.items(), key=operator.itemgetter(0))]) param_values = np.asarray(param_values, dtype=np.float64) else: param_symbols = [] param_values = np.empty(0) comps = sorted(unpack_components(dbf, comps)) pure_elements = get_pure_elements(dbf, comps) callables = callables if callables is not None else {} _callables = { 'massfuncs': {}, 'massgradfuncs': {}, 'callables': {}, 'grad_callables': {} } models = unpack_kwarg(model, default_arg=Model) param_symbols = [wrap_symbol(sym) for sym in param_symbols] phase_records = {} # create models for name in phases: mod = models[name] if isinstance(mod, type): models[name] = mod = mod(dbf, comps, name, parameters=param_symbols) site_fracs = mod.site_fractions variables = sorted(site_fracs, key=str) try: out = getattr(mod, output) except AttributeError: raise AttributeError( 'Missing Model attribute {0} specified for {1}'.format( output, mod.__class__)) if callables.get('callables', {}).get(name, False) and \ ((not build_gradients) or callables.get('grad_callables',{}).get(name, False)): _callables['callables'][name] = callables['callables'][name] if build_gradients: _callables['grad_callables'][name] = callables[ 'grad_callables'][name] else: _callables['grad_callables'][name] = None else: # Build the callables of the output # Only force undefineds to zero if we're not overriding them undefs = { x for x in out.free_symbols if not isinstance(x, v.StateVariable) } - set(param_symbols) undef_vals = repeat(0., len(undefs)) out = out.xreplace(dict(zip(undefs, undef_vals))) build_output = build_functions(out, tuple([v.P, v.T] + site_fracs), parameters=param_symbols, include_grad=build_gradients) if build_gradients: cf, gf = build_output else: cf = build_output gf = None _callables['callables'][name] = cf _callables['grad_callables'][name] = gf if callables.get('massfuncs', {}).get(name, False) and \ ((not build_gradients) or callables.get('massgradfuncs', {}).get(name, False)): _callables['massfuncs'][name] = callables['massfuncs'][name] if build_gradients: _callables['massgradfuncs'][name] = callables['massgradfuncs'][ name] else: _callables['massgradfuncs'][name] = None else: # Build the callables for mass # TODO: In principle, we should also check for undefs in mod.moles() if build_gradients: mcf, mgf = zip(*[ build_functions(mod.moles(el), [v.P, v.T] + variables, include_obj=True, include_grad=build_gradients, parameters=param_symbols) for el in pure_elements ]) else: mcf = tuple([ build_functions(mod.moles(el), [v.P, v.T] + variables, include_obj=True, include_grad=build_gradients, parameters=param_symbols) for el in pure_elements ]) mgf = None _callables['massfuncs'][name] = mcf _callables['massgradfuncs'][name] = mgf if not callables.get('phase_records', {}).get(name, False): pv = param_values else: # Copy parameter values from old PhaseRecord, if it exists pv = callables['phase_records'][name].parameters phase_records[name.upper()] = PhaseRecord_from_cython( comps, variables, np.array(dbf.phases[name].sublattices, dtype=np.float), pv, _callables['callables'][name], _callables['grad_callables'][name], _callables['massfuncs'][name], _callables['massgradfuncs'][name]) if verbose: print(name + ' ') # Update PhaseRecords with any user-specified parameter values, in case we skipped the build phase # We assume here that users know what they are doing, and pass compatible combinations of callables and parameters # See discussion in gh-192 for details if len(param_values) > 0: for prx_name in phase_records: if len(phase_records[prx_name].parameters) != len(param_values): raise ValueError( 'User-specified callables and parameters are incompatible') phase_records[prx_name].parameters = param_values # finally, add the models to the callables _callables['model'] = dict(models) _callables['phase_records'] = phase_records return _callables