コード例 #1
0
ファイル: test_actions.py プロジェクト: vkovalchuk/pychubby
    def test_wrong_n_of_action(self, random_lf):
        lfs = LandmarkFaces(random_lf, random_lf, random_lf)

        a = Multiple([Smile(), Smile()])

        with pytest.raises(ValueError):
            a.perform(lfs)
コード例 #2
0
ファイル: test_actions.py プロジェクト: vkovalchuk/pychubby
    def test_simple(self, random_lf, scale):
        a = Smile(scale)
        new_lf, df = a.perform(random_lf)

        if scale == 0:
            assert np.allclose(df.delta_x, np.zeros_like(df.delta_x))
            assert np.allclose(df.delta_y, np.zeros_like(df.delta_y))
        else:
            assert not np.allclose(df.delta_x, np.zeros_like(df.delta_x))
            assert not np.allclose(df.delta_y, np.zeros_like(df.delta_y))
コード例 #3
0
def smile(img):
    img_path = img
    img = cv2.imread(img_path)
    img8 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    lf = LandmarkFace.estimate(img8)
    from pychubby.actions import Smile

    a = Smile(scale=0.2)
    new_lf, df = a.perform(lf)
    ani = create_animation(df, img)
    plt.imsave('output_image.gif', ani)

    plt.show()
コード例 #4
0
ファイル: test_actions.py プロジェクト: vkovalchuk/pychubby
    def test_lf_to_lfs_casting(self, random_lf):
        a = Multiple(Smile())

        new_lfs, df = a.perform(random_lf)

        assert isinstance(new_lfs, LandmarkFaces)
        assert isinstance(df, DisplacementField)
コード例 #5
0
ファイル: test_actions.py プロジェクト: vkovalchuk/pychubby
    def test_wrong_constructor(self):

        with pytest.raises(TypeError):
            Multiple([Smile(), 'WRONG'])

        with pytest.raises(TypeError):
            Multiple('WRONG')
コード例 #6
0
ファイル: test_actions.py プロジェクト: vkovalchuk/pychubby
    def test_overall(self, random_lf):
        steps = [Smile(), Chubbify()]

        a = Pipeline(steps)

        new_lf, df = a.perform(random_lf)

        assert df.is_valid
コード例 #7
0
ファイル: test_actions.py プロジェクト: vkovalchuk/pychubby
class TestMultiple:
    """Collection of tests focused on the ``Multiple`` action."""
    @pytest.mark.parametrize('per_face_action',
                             [Smile(), [Smile(), Smile()]],
                             ids=['single', 'many'])
    def test_overall(self, random_lf, per_face_action):
        lf_1 = random_lf
        lf_2 = LandmarkFace(random_lf.points + np.random.random((68, 2)),
                            random_lf.img)

        lfs = LandmarkFaces(lf_1, lf_2)

        a = Multiple(per_face_action)

        new_lfs, df = a.perform(lfs)

        assert isinstance(new_lfs, LandmarkFaces)
        assert isinstance(df, DisplacementField)
        assert len(lfs) == len(new_lfs)

    def test_wrong_n_of_action(self, random_lf):
        lfs = LandmarkFaces(random_lf, random_lf, random_lf)

        a = Multiple([Smile(), Smile()])

        with pytest.raises(ValueError):
            a.perform(lfs)

    def test_wrong_constructor(self):

        with pytest.raises(TypeError):
            Multiple([Smile(), 'WRONG'])

        with pytest.raises(TypeError):
            Multiple('WRONG')

    def test_lf_to_lfs_casting(self, random_lf):
        a = Multiple(Smile())

        new_lfs, df = a.perform(random_lf)

        assert isinstance(new_lfs, LandmarkFaces)
        assert isinstance(df, DisplacementField)
コード例 #8
0
def photo():
    img = request.args.get('photob62')
    imgdata = base64.b64decode(img)
    img = cv2.imread(io.BytesIO(base64.b64decode(imgdata)))
    img = cv2.imread(img)
    img8 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    lf = LandmarkFace.estimate(img8)

    from pychubby.actions import Smile, OpenEyes, Multiple, RaiseEyebrow, StretchNostrils, AbsoluteMove

    smile = Smile(scale=0.2)

    new_lf, df = smile.perform(lf)  # lf defined above

    # new_lf.plot(show_landmarks=False)
    plt.imsave('output_image.png', new_lf.img)
    import base64
    encoded = base64.b64encode(open("output_image.png", "rb").read())
    return encoded
コード例 #9
0
            cv2.putText(image, "Face #{}".format(i + 1), (x - 10, y - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
            # loop over the (x, y)-coordinates for the facial landmarks
            # and draw them on the image
            for (x, y) in shape:
                cv2.circle(image, (x, y), 2, (0, 0, 255, 255), -1)
                cv2.circle(blank_image, (x, y), 2, (0, 0, 255, 0), -1)
        cv2.imshow('Video', blank_image)
        cv2.imshow('video1', image)

        # img = frame
        print(frame.shape)
        try:
            lf = LandmarkFace.estimate(img)

            a_per_face = Pipeline([Smile()])
            a_all = Multiple(a_per_face)

            new_lf, _ = a_all.perform(lf)
            new_img = new_lf
            #new_lf.plot(figsize=(5, 5), show_numbers=False)
        except:
            pass
        # data = np.fromstring(new_lf, dtype=np.uint8, sep='')
        # cv2.imshow('video', data)
        cam.send(blank_image)
        cam.sleep_until_next_frame()

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break