コード例 #1
0
def findHDCells(tuning_curves, ep, spikes, position, cut_off=0.49):
    """
        Peak firing rate larger than 1
        and Rayleigh test p<0.001 & z > 100
    """
    cond1 = pd.DataFrame(tuning_curves.max() > 1.0)
    angle = position.restrict(ep)

    from pycircstat.tests import rayleigh
    stat = pd.DataFrame(index=tuning_curves.columns, columns=['pval', 'z'])

    for k in tuning_curves:
        stat.loc[k] = rayleigh(tuning_curves[k].index.values,
                               tuning_curves[k].values)
        #stat.loc[k]=  rayleigh(position['ry'].restrict(ep).values , position['ry'].realign(spikes[k].restrict(ep)))

    rMean = pd.DataFrame(index=tuning_curves.columns, columns=['hd_score'])

    for k in tuning_curves:
        """computes the rayleigh vector length as hdScore. 
        """
        spk = spikes[k]
        spk = spk.restrict(ep)
        angle_spk = angle.realign(spk)
        C = np.sum(np.cos(angle_spk.values))
        S = np.sum(np.sin(angle_spk.values))
        Rmean = np.sqrt(C**2 + S**2) / len(angle_spk)
        rMean.loc[k] = Rmean

    stat['hd_score'] = rMean

    cond2 = pd.DataFrame(np.logical_and(stat['pval'] < 0.001, stat['z'] > 19))
    cond3 = pd.DataFrame(rMean['hd_score'] >= cut_off)
    '''To Do
    Add cond 4 and set it to any value greater than 0.4'''
    #cond4=pd.DataFrame(stat['hd_info'])
    tokeep = (cond1[0] == True) & (cond2[0] == True) & (cond3['hd_score']
                                                        == True)
    stat['hd_cells'] = tokeep
    #tuning_curves have been normalised by occupancy, unlike the rvector
    #Rayleigh z test to test the null hypothesis that there is no sample mean direction
    '''I=pd.DataFrame(index=spikes.keys(),columns=['Ispk'])
    for i in spikes.keys():
        lamda_i=tuning_curves[i].values
        bins=tuning_curves.index
        lamda=len(spikes[i].restrict(ep))/ep.tot_length('s')
        
        pos=position.restrict(ep)
        bins=linspace(0,2*pi,60)
        occu,a=np.histogram(pos, bins)
        occu= occu/sum(occu)
        bits_spk=sum(occu*(lamda_i/lamda)*np.log2(lamda_i/lamda))
        I.loc[i,'Ispk']=bits_spk
    stat['hd_info']=I'''

    return stat
コード例 #2
0
ファイル: functions.py プロジェクト: GRVite/Timaios
def findHDCells(tuning_curves):
    """
        Peak firing rate larger than 1
        and Rayleigh test p<0.001 & z > 100
    """
    cond1 = tuning_curves.max() > 1.0

    from pycircstat.tests import rayleigh
    stat = pd.DataFrame(index=tuning_curves.columns, columns=['pval', 'z'])
    for k in tuning_curves:
        stat.loc[k] = rayleigh(tuning_curves[k].index.values,
                               tuning_curves[k].values)
    cond2 = np.logical_and(stat['pval'] < 0.001, stat['z'] > 20)
    tokeep = np.where(np.logical_and(cond1, cond2))[0]
    return tokeep, stat
コード例 #3
0
def findHDCells(tuning_curves, ep, spikes, position):
    """
        Peak firing rate larger than 1
        and Rayleigh test p<0.001 & z > 100
    """
    cond1 = pd.DataFrame(tuning_curves.max() > 1.0)
    angle = position.restrict(ep)

    from pycircstat.tests import rayleigh
    stat = pd.DataFrame(index=tuning_curves.columns, columns=['pval', 'z'])

    for k in tuning_curves:
        stat.loc[k] = rayleigh(tuning_curves[k].index.values,
                               tuning_curves[k].values)
        #stat.loc[k]=  rayleigh(position['ry'].restrict(ep).values , position['ry'].realign(spikes[k].restrict(ep)))

    rMean = pd.DataFrame(index=tuning_curves.columns, columns=['hd_score'])

    for k in tuning_curves:
        """computes the rayleigh vector length as hdScore. 
        """
        spk = spikes[k]
        spk = spk.restrict(ep)
        angle_spk = angle.realign(spk)
        C = np.sum(np.cos(angle_spk.values))
        S = np.sum(np.sin(angle_spk.values))
        Rmean = np.sqrt(C**2 + S**2) / len(angle_spk)
        rMean.loc[k] = Rmean

    stat['hd_score'] = rMean

    cond2 = pd.DataFrame(np.logical_and(stat['pval'] < 0.001, stat['z'] > 40))
    cond3 = pd.DataFrame(rMean['hd_score'] >= 0.5)
    tokeep = (cond1[0] == True) & (cond2[0] == True) & (cond3['hd_score']
                                                        == True)
    stat['hd_cells'] = tokeep
コード例 #4
0
def plot_correlogram(ax,
                     df,
                     tag,
                     direct='A->B',
                     overlap_key='overlap',
                     color='gray',
                     density=False,
                     regress=True,
                     x_dist=True,
                     y_dist=True,
                     ab_key='phaselag_AB',
                     ba_key='phaselag_BA',
                     alpha=0.2,
                     markersize=8,
                     linew=1):
    """

    Parameters
    ----------
    ax : matplotlib.axes._subplots.AxesSubplot
    df : Dataframe
    tag : str
    direct : str
        Either 'A->B', 'B->A' or 'combined'
    overlap_key : str
        Key of the overlap metric
    color : str
        Color of the scatter
    regress : bool
    x_dist : bool
    y_dist : bool
    ab_key : str
    ba_key : str
    alpha : float

    Returns
    -------

    """
    overlap = df[overlap_key].to_numpy()
    phaselag_AB = df[ab_key].to_numpy()
    phaselag_BA = df[ba_key].to_numpy()

    # Define x, y
    if direct == 'A->B':
        x = overlap
        y = phaselag_AB
    elif direct == 'B->A':
        x = overlap
        y = phaselag_BA
    elif direct == 'combined':
        x = np.concatenate([overlap, overlap])
        y = np.concatenate([phaselag_AB, -phaselag_BA])

    nan_mask = np.isnan(x) | np.isnan(y)
    x_nonan, y_nonan = x[~nan_mask], y[~nan_mask]

    # Scatter or density
    if density:
        xx, yy, zz = linear_circular_gauss_density(x_nonan,
                                                   y_nonan,
                                                   cir_kappa=3 * np.pi,
                                                   lin_std=0.05,
                                                   xbins=200,
                                                   ybins=800,
                                                   ybound=(-np.pi, 2 * np.pi))
        ax.pcolormesh(xx, yy, zz)
    else:
        ax.scatter(x, y, c=color, alpha=alpha, s=markersize, marker='.')
        ax.scatter(x,
                   y + (2 * np.pi),
                   c=color,
                   alpha=alpha,
                   s=markersize,
                   marker='.')

    # Plot marginal mean
    mean_y = circmean(y_nonan)
    ax.plot([0, 0.2], [mean_y, mean_y], c='k', linewidth=linew)

    # Regression
    regress_d = None
    if regress:
        regress_d = rcc(x_nonan, y_nonan, abound=[-2, 2])
        m, c, r, pval = regress_d['aopt'], regress_d['phi0'], regress_d[
            'rho'], regress_d['p']
        r_regress = np.linspace(0, 1, 20)
        lag_regress = 2 * np.pi * r_regress * m
        for tmpid, intercept in enumerate(
            [2 * mul_idx * np.pi + c for mul_idx in [-2, -1, 0, 1, 2]]):
            if tmpid == 0:
                ax.plot(r_regress,
                        lag_regress + intercept,
                        c='k',
                        linewidth=linew,
                        label='rho=%0.2f (p%s)' % (r, p2str(pval)))
            else:
                ax.plot(r_regress,
                        lag_regress + intercept,
                        c='k',
                        linewidth=linew)

    # X-axis
    ax.plot([0, 1], [0, 0], c='k', alpha=1, linewidth=linew)

    # (y-axis) Interpolation and Smoothened histrogram
    if y_dist:
        p, _ = rayleigh(y)
        yax, yden = circular_density_1d(y_nonan, 10 * np.pi, 60,
                                        (-np.pi, 3 * np.pi))

        ax.plot(yden / yden.max() * 0.2, yax, c='k', linewidth=linew)

    # (x-axis) Interpolation and Smoothened histrogram
    if x_dist:
        xax, xden = linear_density_1d(x_nonan,
                                      std=0.05,
                                      bins=100,
                                      bound=(0, 1))
        ax.plot(xax,
                xden / xden.max() * (np.pi / 2) - np.pi,
                c='k',
                linewidth=linew)

    # Set title

    # ax.set_title("%s %s (n=%d)" % (tag, direct, num_pairs), fontsize=fontsize)
    ax.set_ylim(-np.pi, 2 * np.pi)
    ax.set_yticks([-np.pi, 0, np.pi, np.pi * 2])
    _ = ax.set_yticklabels(['$-\pi$', '0', '$\pi$', '$2\pi$'])
    return ax, x, y, regress_d