コード例 #1
0
def train_model():
    """Trains the model."""
    # Setup training/testing environment
    setup_env()
    # Construct the model, loss_fun, and optimizer
    model = setup_model()
    loss_fun = builders.build_loss_fun().cuda()
    optimizer = optim.construct_optimizer(model)
    # Load checkpoint or initial weights
    start_epoch = 0
    if cfg.TRAIN.AUTO_RESUME and checkpoint.has_checkpoint():
        last_checkpoint = checkpoint.get_last_checkpoint()
        checkpoint_epoch = checkpoint.load_checkpoint(last_checkpoint, model,
                                                      optimizer)
        logger.info("Loaded checkpoint from: {}".format(last_checkpoint))
        start_epoch = checkpoint_epoch + 1
    elif cfg.TRAIN.WEIGHTS:
        checkpoint.load_checkpoint(cfg.TRAIN.WEIGHTS, model)
        logger.info("Loaded initial weights from: {}".format(
            cfg.TRAIN.WEIGHTS))
    # Create data loaders and meters
    train_loader = loader.construct_train_loader()
    test_loader = loader.construct_test_loader()
    train_meter = meters.TrainMeter(len(train_loader))
    test_meter = meters.TestMeter(len(test_loader))
    # Compute model and loader timings
    if start_epoch == 0 and cfg.PREC_TIME.NUM_ITER > 0:
        benchmark.compute_time_full(model, loss_fun, train_loader, test_loader)
    # Perform the training loop
    logger.info("Start epoch: {}".format(start_epoch + 1))
    for cur_epoch in range(start_epoch, cfg.OPTIM.MAX_EPOCH):
        # Train for one epoch
        train_epoch(train_loader, model, loss_fun, optimizer, train_meter,
                    cur_epoch)
        # Compute precise BN stats
        if cfg.BN.USE_PRECISE_STATS:
            net.compute_precise_bn_stats(model, train_loader)
        # Save a checkpoint
        if (cur_epoch + 1) % cfg.TRAIN.CHECKPOINT_PERIOD == 0:
            checkpoint_file = checkpoint.save_checkpoint(
                model, optimizer, cur_epoch)
            logger.info("Wrote checkpoint to: {}".format(checkpoint_file))
        # Evaluate the model
        next_epoch = cur_epoch + 1
        if next_epoch % cfg.TRAIN.EVAL_PERIOD == 0 or next_epoch == cfg.OPTIM.MAX_EPOCH:
            test_epoch(test_loader, model, test_meter, cur_epoch)
コード例 #2
0
ファイル: test_net.py プロジェクト: acabadw22/pycls
def test_model():
    """Evaluates the model."""

    # Setup logging
    logging.setup_logging()
    # Show the config
    logger.info("Config:\n{}".format(cfg))

    # Fix the RNG seeds (see RNG comment in core/config.py for discussion)
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)
    # Configure the CUDNN backend
    torch.backends.cudnn.benchmark = cfg.CUDNN.BENCHMARK

    # Build the model (before the loaders to speed up debugging)
    model = builders.build_model()
    logger.info("Model:\n{}".format(model))
    logger.info(logging.dump_json_stats(net.complexity(model)))

    # Compute precise time
    if cfg.PREC_TIME.ENABLED:
        logger.info("Computing precise time...")
        loss_fun = builders.build_loss_fun()
        prec_time = net.compute_precise_time(model, loss_fun)
        logger.info(logging.dump_json_stats(prec_time))
        net.reset_bn_stats(model)

    # Load model weights
    checkpoint.load_checkpoint(cfg.TEST.WEIGHTS, model)
    logger.info("Loaded model weights from: {}".format(cfg.TEST.WEIGHTS))

    # Create data loaders
    test_loader = loader.construct_test_loader()

    # Create meters
    test_meter = meters.TestMeter(len(test_loader))

    # Evaluate the model
    test_epoch(test_loader, model, test_meter, 0)
コード例 #3
0
def train_model():
    """Trains the model."""

    # Setup logging
    logging.setup_logging()
    # Show the config
    logger.info("Config:\n{}".format(cfg))

    # Fix the RNG seeds (see RNG comment in core/config.py for discussion)
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)
    # Configure the CUDNN backend
    torch.backends.cudnn.benchmark = cfg.CUDNN.BENCHMARK

    # Build the model (before the loaders to speed up debugging)
    model = builders.build_model()
    logger.info("Model:\n{}".format(model))
    logger.info(logging.dump_json_stats(net.complexity(model)))

    # Define the loss function
    loss_fun = builders.build_loss_fun()
    # Construct the optimizer
    optimizer = optim.construct_optimizer(model)

    # Load checkpoint or initial weights
    start_epoch = 0
    if cfg.TRAIN.AUTO_RESUME and checkpoint.has_checkpoint():
        last_checkpoint = checkpoint.get_last_checkpoint()
        checkpoint_epoch = checkpoint.load_checkpoint(last_checkpoint, model,
                                                      optimizer)
        logger.info("Loaded checkpoint from: {}".format(last_checkpoint))
        start_epoch = checkpoint_epoch + 1
    elif cfg.TRAIN.WEIGHTS:
        checkpoint.load_checkpoint(cfg.TRAIN.WEIGHTS, model)
        logger.info("Loaded initial weights from: {}".format(
            cfg.TRAIN.WEIGHTS))

    # Compute precise time
    if start_epoch == 0 and cfg.PREC_TIME.ENABLED:
        logger.info("Computing precise time...")
        prec_time = net.compute_precise_time(model, loss_fun)
        logger.info(logging.dump_json_stats(prec_time))
        net.reset_bn_stats(model)

    # Create data loaders
    train_loader = loader.construct_train_loader()
    test_loader = loader.construct_test_loader()

    # Create meters
    train_meter = meters.TrainMeter(len(train_loader))
    test_meter = meters.TestMeter(len(test_loader))

    # Perform the training loop
    logger.info("Start epoch: {}".format(start_epoch + 1))

    for cur_epoch in range(start_epoch, cfg.OPTIM.MAX_EPOCH):
        # Train for one epoch
        train_epoch(train_loader, model, loss_fun, optimizer, train_meter,
                    cur_epoch)
        # Compute precise BN stats
        if cfg.BN.USE_PRECISE_STATS:
            net.compute_precise_bn_stats(model, train_loader)
        # Save a checkpoint
        if checkpoint.is_checkpoint_epoch(cur_epoch):
            checkpoint_file = checkpoint.save_checkpoint(
                model, optimizer, cur_epoch)
            logger.info("Wrote checkpoint to: {}".format(checkpoint_file))
        # Evaluate the model
        if is_eval_epoch(cur_epoch):
            test_epoch(test_loader, model, test_meter, cur_epoch)
コード例 #4
0
def test_ftta_model(corruptions, levels):
    """Use feed back to fine-tune some part of the model. (with all kind of corruptions)"""
    all_results = []
    for corruption_level in levels:
        lvl_results = []
        for corruption_type in corruptions:
            cfg.TRAIN.CORRUPTION = corruption_type
            cfg.TRAIN.LEVEL = corruption_level
            cfg.TEST.CORRUPTION = corruption_type
            cfg.TEST.LEVEL = corruption_level

            # Setup training/testing environment
            setup_env()
            # Construct the model, loss_fun, and optimizer
            model = setup_model()
            loss_fun = builders.build_loss_fun().cuda()
            optimizer = optim.construct_optimizer(model)
            # Load checkpoint or initial weights
            start_epoch = 0
            checkpoint.load_checkpoint(cfg.TRAIN.WEIGHTS,
                                       model,
                                       strict=cfg.TRAIN.LOAD_STRICT)
            logger.info("Loaded initial weights from: {}".format(
                cfg.TRAIN.WEIGHTS))
            # Create data loaders and meters
            train_loader = loader.construct_train_loader()
            test_loader = loader.construct_test_loader()
            train_meter = meters.TrainMeter(len(train_loader))
            test_meter = meters.TestMeter(len(test_loader))
            # Compute model and loader timings
            if start_epoch == 0 and cfg.PREC_TIME.NUM_ITER > 0:
                benchmark.compute_time_full(model, loss_fun, train_loader,
                                            test_loader)

            # Perform the training loop
            logger.info("Start epoch: {}".format(start_epoch + 1))
            for cur_epoch in range(start_epoch, cfg.OPTIM.MAX_EPOCH):
                if cfg.TRAIN.ADAPTATION != 'test_only':
                    if cfg.TRAIN.ADAPTATION == 'update_bn':
                        bn_update(model, train_loader)
                    elif cfg.TRAIN.ADAPTATION == 'min_entropy':
                        # Train for one epoch
                        train_epoch(train_loader, model, loss_fun, optimizer,
                                    train_meter, cur_epoch)
                        bn_update(model, train_loader)

                    # Save a checkpoint
                    if (cur_epoch + 1) % cfg.TRAIN.CHECKPOINT_PERIOD == 0:
                        checkpoint_file = checkpoint.save_checkpoint(
                            model, optimizer, cur_epoch)
                        logger.info(
                            "Wrote checkpoint to: {}".format(checkpoint_file))

                # Evaluate the model
                next_epoch = cur_epoch + 1
                if next_epoch % cfg.TRAIN.EVAL_PERIOD == 0 or next_epoch == cfg.OPTIM.MAX_EPOCH:
                    top1 = test_epoch(test_loader, model, test_meter,
                                      cur_epoch)
            lvl_results.append(top1)
        all_results.append(lvl_results)

    for lvl_idx in range(len(all_results)):
        logger.info("corruption level: {}".format(levels[lvl_idx]))
        logger.info("corruption types: {}".format(corruptions))
        logger.info(all_results[lvl_idx])

    # show_parameters(model)

    return all_results
コード例 #5
0
def train_model():
    """Trains the model."""
    # Setup training/testing environment
    setup_env()
    # Construct the model, loss_fun, and optimizer
    model = setup_model()
    loss_fun = builders.build_loss_fun().cuda()
    if "search" in cfg.MODEL.TYPE:
        params_w = [v for k, v in model.named_parameters() if "alphas" not in k]
        params_a = [v for k, v in model.named_parameters() if "alphas" in k]
        optimizer_w = torch.optim.SGD(
            params=params_w,
            lr=cfg.OPTIM.BASE_LR,
            momentum=cfg.OPTIM.MOMENTUM,
            weight_decay=cfg.OPTIM.WEIGHT_DECAY,
            dampening=cfg.OPTIM.DAMPENING,
            nesterov=cfg.OPTIM.NESTEROV
        )
        if cfg.OPTIM.ARCH_OPTIM == "adam":
            optimizer_a = torch.optim.Adam(
                params=params_a,
                lr=cfg.OPTIM.ARCH_BASE_LR,
                betas=(0.5, 0.999),
                weight_decay=cfg.OPTIM.ARCH_WEIGHT_DECAY
            )
        elif cfg.OPTIM.ARCH_OPTIM == "sgd":
            optimizer_a = torch.optim.SGD(
                params=params_a,
                lr=cfg.OPTIM.ARCH_BASE_LR,
                momentum=cfg.OPTIM.MOMENTUM,
                weight_decay=cfg.OPTIM.ARCH_WEIGHT_DECAY,
                dampening=cfg.OPTIM.DAMPENING,
                nesterov=cfg.OPTIM.NESTEROV
            )
        optimizer = [optimizer_w, optimizer_a]
    else:
        optimizer = optim.construct_optimizer(model)
    # Load checkpoint or initial weights
    start_epoch = 0
    if cfg.TRAIN.AUTO_RESUME and checkpoint.has_checkpoint():
        last_checkpoint = checkpoint.get_last_checkpoint()
        checkpoint_epoch = checkpoint.load_checkpoint(last_checkpoint, model, optimizer)
        logger.info("Loaded checkpoint from: {}".format(last_checkpoint))
        start_epoch = checkpoint_epoch + 1
    elif cfg.TRAIN.WEIGHTS:
        checkpoint.load_checkpoint(cfg.TRAIN.WEIGHTS, model)
        logger.info("Loaded initial weights from: {}".format(cfg.TRAIN.WEIGHTS))
    # Create data loaders and meters
    if cfg.TRAIN.PORTION < 1:
        if "search" in cfg.MODEL.TYPE:
            train_loader = [loader._construct_loader(
                dataset_name=cfg.TRAIN.DATASET,
                split=cfg.TRAIN.SPLIT,
                batch_size=int(cfg.TRAIN.BATCH_SIZE / cfg.NUM_GPUS),
                shuffle=True,
                drop_last=True,
                portion=cfg.TRAIN.PORTION,
                side="l"
            ),
            loader._construct_loader(
                dataset_name=cfg.TRAIN.DATASET,
                split=cfg.TRAIN.SPLIT,
                batch_size=int(cfg.TRAIN.BATCH_SIZE / cfg.NUM_GPUS),
                shuffle=True,
                drop_last=True,
                portion=cfg.TRAIN.PORTION,
                side="r"
            )]
        else:
            train_loader = loader._construct_loader(
                dataset_name=cfg.TRAIN.DATASET,
                split=cfg.TRAIN.SPLIT,
                batch_size=int(cfg.TRAIN.BATCH_SIZE / cfg.NUM_GPUS),
                shuffle=True,
                drop_last=True,
                portion=cfg.TRAIN.PORTION,
                side="l"
            )
        test_loader = loader._construct_loader(
            dataset_name=cfg.TRAIN.DATASET,
            split=cfg.TRAIN.SPLIT,
            batch_size=int(cfg.TRAIN.BATCH_SIZE / cfg.NUM_GPUS),
            shuffle=False,
            drop_last=False,
            portion=cfg.TRAIN.PORTION,
            side="r"
        )
    else:
        train_loader = loader.construct_train_loader()
        test_loader = loader.construct_test_loader()
    train_meter_type = meters.TrainMeterIoU if cfg.TASK == "seg" else meters.TrainMeter
    test_meter_type = meters.TestMeterIoU if cfg.TASK == "seg" else meters.TestMeter
    l = train_loader[0] if isinstance(train_loader, list) else train_loader
    train_meter = train_meter_type(len(l))
    test_meter = test_meter_type(len(test_loader))
    # Compute model and loader timings
    if start_epoch == 0 and cfg.PREC_TIME.NUM_ITER > 0:
        l = train_loader[0] if isinstance(train_loader, list) else train_loader
        benchmark.compute_time_full(model, loss_fun, l, test_loader)
    # Perform the training loop
    logger.info("Start epoch: {}".format(start_epoch + 1))
    for cur_epoch in range(start_epoch, cfg.OPTIM.MAX_EPOCH):
        # Train for one epoch
        f = search_epoch if "search" in cfg.MODEL.TYPE else train_epoch
        f(train_loader, model, loss_fun, optimizer, train_meter, cur_epoch)
        # Compute precise BN stats
        if cfg.BN.USE_PRECISE_STATS:
            net.compute_precise_bn_stats(model, train_loader)
        # Save a checkpoint
        if (cur_epoch + 1) % cfg.TRAIN.CHECKPOINT_PERIOD == 0:
            checkpoint_file = checkpoint.save_checkpoint(model, optimizer, cur_epoch)
            logger.info("Wrote checkpoint to: {}".format(checkpoint_file))
        # Evaluate the model
        next_epoch = cur_epoch + 1
        if next_epoch % cfg.TRAIN.EVAL_PERIOD == 0 or next_epoch == cfg.OPTIM.MAX_EPOCH:
            test_epoch(test_loader, model, test_meter, cur_epoch)
コード例 #6
0
ファイル: trainer.py プロジェクト: zhengxiawu/pytorch_cls
def train_model():
    """Trains the model."""
    # Setup training/testing environment
    setup_env()
    # Construct the model, loss_fun, and optimizer
    model = setup_model()
    loss_fun = builders.build_loss_fun().cuda()
    optimizer = optim.construct_optimizer(model)
    # Load checkpoint or initial weights
    start_epoch = 0
    if cfg.TRAIN.AUTO_RESUME and checkpoint.has_checkpoint():
        last_checkpoint = checkpoint.get_last_checkpoint()
        checkpoint_epoch = checkpoint.load_checkpoint(last_checkpoint, model,
                                                      optimizer)
        logger.info("Loaded checkpoint from: {}".format(last_checkpoint))
        start_epoch = checkpoint_epoch + 1
    elif cfg.TRAIN.WEIGHTS:
        checkpoint.load_checkpoint(cfg.TRAIN.WEIGHTS, model)
        logger.info("Loaded initial weights from: {}".format(
            cfg.TRAIN.WEIGHTS))
    # Create data loaders and meters
    if cfg.TEST.DATASET == 'imagenet_dataset' or cfg.TRAIN.DATASET == 'imagenet_dataset':
        dataset = loader.construct_train_loader()
        train_loader = dataset.train_loader
        test_loader = dataset.val_loader
    else:
        dataset = None
        train_loader = loader.construct_train_loader()
        test_loader = loader.construct_test_loader()
    train_meter = meters.TrainMeter(len(train_loader))
    test_meter = meters.TestMeter(len(test_loader))
    # Compute model and loader timings
    if start_epoch == 0 and cfg.PREC_TIME.NUM_ITER > 0:
        benchmark.compute_time_full(model, loss_fun, train_loader, test_loader)
    # Perform the training loop
    logger.info("Start epoch: {}".format(start_epoch + 1))
    for cur_epoch in range(start_epoch, cfg.OPTIM.MAX_EPOCH):
        # Train for one epoch
        train_epoch(train_loader, model, loss_fun, optimizer, train_meter,
                    cur_epoch)
        # Compute precise BN stats
        if cfg.BN.USE_PRECISE_STATS:
            net.compute_precise_bn_stats(model, train_loader)
        # Save a checkpoint
        if (cur_epoch + 1) % cfg.TRAIN.CHECKPOINT_PERIOD == 0:
            checkpoint_file = checkpoint.save_checkpoint(
                model, optimizer, cur_epoch)
            logger.info("Wrote checkpoint to: {}".format(checkpoint_file))
        # Evaluate the model
        next_epoch = cur_epoch + 1
        if next_epoch % cfg.TRAIN.EVAL_PERIOD == 0 or next_epoch == cfg.OPTIM.MAX_EPOCH:
            logger.info("Start testing")
            test_epoch(test_loader, model, test_meter, cur_epoch)
        if dataset is not None:
            logger.info("Reset the dataset")
            train_loader._dali_iterator.reset()
            test_loader._dali_iterator.reset()
            # clear memory
            if torch.cuda.is_available():
                torch.cuda.synchronize()
                torch.cuda.empty_cache(
                )  # https://forums.fast.ai/t/clearing-gpu-memory-pytorch/14637
            gc.collect()