# -*- coding: utf-8 -*- from pycmbs.plots import GlecklerPlot import matplotlib.pyplot as plt # this is just an artificial example illustrating principle usage of the # Portraet diagram fig = plt.figure(figsize=(8, 6)) G = GlecklerPlot(fig=fig) # register models G.add_model('MPI-ESM-MR') G.add_model('MPI-ESM-LR') G.add_model('MPI-ESM-P') # then register variables G.add_variable('Ta') G.add_variable('P') # after that you can add values to be plotted # pos=1 top triangle, pos2= lower triangle # different positions are for different observations G.add_data('Ta', 'MPI-ESM-MR', 0.5, pos=1) G.add_data('Ta', 'MPI-ESM-MR', -0.2, pos=2) G.add_data('Ta', 'MPI-ESM-LR', 0.3, pos=1) G.add_data('Ta', 'MPI-ESM-LR', 0.2, pos=2) G.add_data('Ta', 'MPI-ESM-P', 0.05, pos=1) G.add_data('Ta', 'MPI-ESM-P', -0.1, pos=2)
def test_gleckler_index(self): """ test Reichler index/Gleckler plot """ # generate sample data # sample data tmp = np.zeros((5, 3, 1)) tmp[:,0,0] = np.ones(5)*1. tmp[:,1,0] = np.ones(5)*2. tmp[:,2,0] = np.ones(5)*5. # The data is like ... #| 1 | 2 | 5 | #| 1 | 2 | 5 | #| 1 | 2 | 5 | #| 1 | 2 | 5 | #| 1 | 2 | 5 | x = self.D.copy() x._temporal_subsetting(0, 4) x.data = np.ma.array(tmp, mask=tmp!=tmp) x.std = np.ones(x.data.shape) x.time[0] = pl.datestr2num('2000-02-15') x.time[1] = pl.datestr2num('2000-03-15') x.time[2] = pl.datestr2num('2000-04-15') x.time[3] = pl.datestr2num('2000-05-15') x.time[4] = pl.datestr2num('2000-06-15') y = self.D.copy() y._temporal_subsetting(0, 4) tmp = np.ones(x.data.shape) # sample data 2 y.data = np.ma.array(tmp, mask=tmp!=tmp) y.time[0] = pl.datestr2num('2000-02-15') y.time[1] = pl.datestr2num('2000-03-15') y.time[2] = pl.datestr2num('2000-04-15') y.time[3] = pl.datestr2num('2000-05-15') y.time[4] = pl.datestr2num('2000-06-15') # Case 1: same area weights # cell area tmp = np.ones((3, 1)) x.cell_area = tmp*1. #| 1-1 | 2-1 | 5-1 | #| 1-1 | 2-1 | 5-1 | #| 1-1 | 2-1 | 5-1 | #| 1-1 | 2-1 | 5-1 | #| 1-1 | 2-1 | 5-1 | #=================== #| 0 | 5 | 5*4**2=5*16. = 80 | #==> E2 = sqrt(85./(15.)) D = GlecklerPlot() r = D.calc_index(x, y, 'a', 'b', time_weighting=False) wt = np.ones(5) / 5. ref = np.sqrt(((85./15.) * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error D = GlecklerPlot() r = D.calc_index(x, y, 'a', 'b') wt = np.asarray([29., 31., 30., 31., 30.]) wt = wt / wt.sum() ref = np.sqrt(((85./15.) * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error # Case 2: Different area weights # cell area tmp = np.ones((3, 1)) tmp[1, 0] = 2. x.cell_area = tmp*1. #| 1-1=0 | 2-1=1 | 5-1=16 | #| 1-1=0 | 2-1=1 | 5-1=16 | #| 1-1=0 | 2-1=1 | 5-1=16 | #| 1-1=0 | 2-1=1 | 5-1=16 | #| 1-1=0 | 2-1=1 | 5-1=16 | #-------------------------- # w = 0.25 w = 0.5 w=0.25| #-------------------------- # 0.25*0 + 0.5 * 1 + 0.25 * 16 = 0 + 0.5 + 4 = 4.5 # the mean of that is 4.5 for each timestep # mean because the overall weights are calculated as such that # they give a total weight if 1 # diagnostic D = GlecklerPlot() r = D.calc_index(x, y, 'a', 'b', time_weighting=False) wt = np.ones(5) / 5. ref = np.sqrt((4.5 * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error wt = np.asarray([29., 31., 30., 31., 30.]) wt = wt / wt.sum() ref = np.sqrt((4.5 * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error # Case 3: use different std x.std = np.ones(x.data.shape) x.std[:, 2, 0] = 0.5 #| 1-1=0 | 2-1=1 | 5-1=16 / 0.5 | #| 1-1=0 | 2-1=1 | 5-1=16 / 0.5 | #| 1-1=0 | 2-1=1 | 5-1=16 / 0.5 | #| 1-1=0 | 2-1=1 | 5-1=16 / 0.5 | #| 1-1=0 | 2-1=1 | 5-1=16 / 0.5 | #-------------------------------- # w = 0.25 w = 0.5 w=0.25| # 0 + 0.5 + 0.25*32 = 0.5 + 8 = 8.5 D = GlecklerPlot() r = D.calc_index(x, y, 'a', 'b', time_weighting=False) wt = np.ones(5) / 5. ref = np.sqrt((8.5 * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error wt = np.asarray([29., 31., 30., 31., 30.]) wt = wt / wt.sum() ref = np.sqrt((8.5 * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error
# -*- coding: utf-8 -*- """ This file is part of pyCMBS. (c) 2012- Alexander Loew For COPYING and LICENSE details, please refer to the LICENSE file """ from pycmbs.plots import GlecklerPlot import matplotlib.pyplot as plt # this is just an artificial example illustrating principle usage of the # Portraet diagram fig = plt.figure(figsize=(8,6)) G = GlecklerPlot(fig=fig) # register models G.add_model('MPI-ESM-MR') G.add_model('MPI-ESM-LR') G.add_model('MPI-ESM-P') # then register variables G.add_variable('Ta') G.add_variable('P') # after that you can add values to be plotted # pos=1 top triangle, pos2= lower triangle # different positions are for different observations G.add_data('Ta','MPI-ESM-MR',0.5,pos=1) G.add_data('Ta','MPI-ESM-MR',-0.2,pos=2)
def test_GlecklerPlot_4obs(self): G = GlecklerPlot() G.add_model('echam5') G.add_model('mpi-esm') G.add_variable('ta') G.add_variable('P') G.add_data('P', 'echam5', 0.5, pos=1) G.add_data('P', 'echam5', 0.25, pos=2) G.add_data('P', 'echam5', -0.25, pos=3) G.add_data('P', 'mpi-esm', -0.25, pos=4) G.plot()
def test_GlecklerPlot(self): G = GlecklerPlot() G.add_model('echam5') G.add_model('mpi-esm') G.add_variable('ta') G.add_variable('P') G.add_data('ta', 'echam5', 0.5, pos=1) G.add_data('P', 'echam5', 0.25, pos=1) G.add_data('P', 'echam5', -0.25, pos=2) G.add_data('P', 'mpi-esm', -0.25, pos=1) G.plot() G.plot_model_error('ta') G.plot_model_ranking('ta') G.write_ranking_table('ta', self._tmpdir + os.sep + 'nix.tex', fmt='latex') self.assertTrue(os.path.exists(self._tmpdir + os.sep + 'nix.tex')) if os.path.exists(self._tmpdir + os.sep + 'nix.tex'): os.remove(self._tmpdir + os.sep + 'nix.tex') G.write_ranking_table('ta', self._tmpdir + os.sep + 'nix1', fmt='latex') self.assertTrue(os.path.exists(self._tmpdir + os.sep + 'nix1.tex')) if os.path.exists(self._tmpdir + os.sep + 'nix1.tex'): os.remove(self._tmpdir + os.sep + 'nix1.tex')
def main(): plt.close('all') if len(sys.argv) > 1: if len(sys.argv) == 2: # a single argument was provides as option if sys.argv[1] == 'init': # copy INI files and a template configuration file # to current directory create_dummy_configuration() sys.exit() else: file = sys.argv[1] # name of config file if not os.path.exists(file): raise ValueError('Configuration file can not be \ found: %s' % file) else: raise ValueError('Currently not more than one command \ line parameter supported!') else: # default print('*******************************************') print('* WELCOME to pycmbs.py *') print('* Happy benchmarking ... *') print('*******************************************') print '' print 'please specify a configuration filename as argument' sys.exit() #################################################################### # CONFIGURATION and OPTIONS #################################################################### # read configuration file CF = config.ConfigFile(file) # read plotting options PCFG = config.PlotOptions() PCFG.read(CF) plot_options = PCFG #################################################################### # REMOVE previous Data warnings #################################################################### outdir = CF.options['outputdir'] if outdir[-1] != os.sep: outdir += os.sep os.environ['PYCMBS_OUTPUTDIR'] = outdir os.environ['PYCMBS_OUTPUTFORMAT'] = CF.options['report_format'] os.environ['DATA_WARNING_FILE'] = outdir + 'data_warnings_' \ + CF.options['report'] + '.log' if os.path.exists(os.environ['DATA_WARNING_FILE']): os.remove(os.environ['DATA_WARNING_FILE']) for thevar in plot_options.options.keys(): if thevar in plot_options.options.keys(): print('Variable: %s' % thevar) for k in plot_options.options[thevar].keys(): print(' Observation: %s' % k) if CF.options['basemap']: f_fast = False else: f_fast = True shift_lon = use_basemap = not f_fast ######################################################################## # TIMES ######################################################################## s_start_time = CF.start_date s_stop_time = CF.stop_date start_time = pylab.num2date(pylab.datestr2num(s_start_time)) stop_time = pylab.num2date(pylab.datestr2num(s_stop_time)) ######################################################################## # INIT METHODS ######################################################################## # names of analysis scripts for all variables --- scripts = CF.get_analysis_scripts() # get dictionary with methods how to read data for model variables to be # analyzed variables = CF.variables varmethods = CF.get_methods4variables(CF.variables) # READ DATA # create a Model instance for each model specified # in the configuration file # # read the data for all variables and return a list # of Data objects for further processing model_cnt = 1 proc_models = [] for i in range(len(CF.models)): # assign model information from configuration data_dir = CF.dirs[i] model = CF.models[i] experiment = CF.experiments[i] # create model object and read data # results are stored in individual variables namex modelXXXXX if CF.dtypes[i].upper() == 'CMIP5': themodel = CMIP5Data(data_dir, model, experiment, varmethods, intervals=CF.intervals, lat_name='lat', lon_name='lon', label=model, start_time=start_time, stop_time=stop_time, shift_lon=shift_lon) elif CF.dtypes[i].upper() == 'CMIP5RAW': themodel = CMIP5RAWData(data_dir, model, experiment, varmethods, intervals=CF.intervals, lat_name='lat', lon_name='lon', label=model, start_time=start_time, stop_time=stop_time, shift_lon=shift_lon) elif 'CMIP5RAWSINGLE' in CF.dtypes[i].upper(): themodel = CMIP5RAW_SINGLE(data_dir, model, experiment, varmethods, intervals=CF.intervals, lat_name='lat', lon_name='lon', label=model, start_time=start_time, stop_time=stop_time, shift_lon=shift_lon) elif CF.dtypes[i].upper() == 'JSBACH_BOT': themodel = JSBACH_BOT(data_dir, varmethods, experiment, intervals=CF.intervals, start_time=start_time, stop_time=stop_time, name=model, shift_lon=shift_lon) elif CF.dtypes[i].upper() == 'JSBACH_RAW': themodel = JSBACH_RAW(data_dir, varmethods, experiment, intervals=CF.intervals, name=model, shift_lon=shift_lon, start_time=start_time, stop_time=stop_time) elif CF.dtypes[i].upper() == 'JSBACH_RAW2': themodel = JSBACH_RAW2(data_dir, varmethods, experiment, intervals=CF.intervals, start_time=start_time, stop_time=stop_time, name=model, shift_lon=shift_lon) # , # model_dict=model_dict) elif CF.dtypes[i].upper() == 'JSBACH_SPECIAL': themodel = JSBACH_SPECIAL(data_dir, varmethods, experiment, intervals=CF.intervals, start_time=start_time, stop_time=stop_time, name=model, shift_lon=shift_lon) # , # model_dict=model_dict) elif CF.dtypes[i].upper() == 'CMIP3': themodel = CMIP3Data(data_dir, model, experiment, varmethods, intervals=CF.intervals, lat_name='lat', lon_name='lon', label=model, start_time=start_time, stop_time=stop_time, shift_lon=shift_lon) else: raise ValueError('Invalid model type: %s' % CF.dtypes[i]) # read data for current model # options that specify regrid options etc. themodel._global_configuration = CF themodel.plot_options = plot_options themodel.get_data() # copy current model to a variable named modelXXXX cmd = 'model' + str(model_cnt).zfill(4) + ' = ' \ + 'themodel.copy(); del themodel' exec(cmd) # store copy of cmip5 model in separate variable # append model to list of models --- proc_models.append('model' + str(model_cnt).zfill(4)) model_cnt += 1 ######################################################################## # MULTIMODEL MEAN # here we have now all the model and variables read. # The list of all models is contained in the variable proc_models. f_mean_model = True if f_mean_model: # calculate climatological mean values: The models contain already # climatological information in the variables[] list. Thus there is # not need to take care for the different timesteps here. This # should have been handled already in the preprocessing. # generate instance of MeanModel to store result MEANMODEL = MeanModel(varmethods, intervals=CF.intervals) # sum up all models for i in range(len(proc_models)): exec('actmodel = ' + proc_models[i] + '.copy()') MEANMODEL.add_member(actmodel) del actmodel # calculate ensemble mean MEANMODEL.ensmean() # save mean model to file # include filename of configuration file MEANMODEL.save(get_temporary_directory(), prefix='MEANMODEL_' + file[:-4]) # add mean model to general list of models to process in analysis proc_models.append('MEANMODEL') ######################################################################## # END MULTIMODEL MEAN ######################################################################## ######################################################################## # INIT reporting and plotting and diagnostics ######################################################################## # Gleckler Plot global_gleckler = GlecklerPlot() # Report rep = Report(CF.options['report'], 'pyCMBS report - ' + CF.options['report'], CF.options['author'], outdir=outdir, dpi=300, format=CF.options['report_format']) cmd = 'cp ' + os.environ['PYCMBSPATH'] + os.sep + \ 'logo' + os.sep + 'Phytonlogo5.pdf ' + rep.outdir os.system(cmd) ######################################################################## ######################################################################## ######################################################################## # MAIN ANALYSIS LOOP: perform analysis for each model and variable ######################################################################## ######################################################################## ######################################################################## skeys = scripts.keys() for variable in variables: # register current variable in Gleckler Plot global_gleckler.add_variable(variable) # call analysis scripts for each variable for k in range(len(skeys)): if variable == skeys[k]: print 'Doing analysis for variable ... ', variable print ' ... ', scripts[variable] # model list is reformatted so it can be evaluated properly model_list = str(proc_models).replace("'", "") cmd = 'analysis.' + scripts[variable] + '(' + model_list \ + ',GP=global_gleckler,shift_lon=shift_lon, \ use_basemap=use_basemap,report=rep,\ interval=CF.intervals[variable],\ plot_options=PCFG)' eval(cmd) ######################################################################## # GLECKLER PLOT finalization ... ######################################################################## # generate Gleckler analysis plot for all variables and models analyzed /// global_gleckler.plot(vmin=-0.1, vmax=0.1, nclasses=16, show_value=False, ticks=[-0.1, -0.05, 0., 0.05, 0.1]) oname = outdir + 'gleckler.pkl' if os.path.exists(oname): os.remove(oname) pickle.dump(global_gleckler.models, open(outdir + 'gleckler_models.pkl', 'w')) pickle.dump(global_gleckler.variables, open(outdir + 'gleckler_variables.pkl', 'w')) pickle.dump(global_gleckler.data, open(outdir + 'gleckler_data.pkl', 'w')) pickle.dump(global_gleckler._raw_data, open(outdir + 'gleckler_rawdata.pkl', 'w')) rep.section('Summary error statistics') rep.subsection('Gleckler metric') rep.figure(global_gleckler.fig, caption='Gleckler et al. (2008) model performance index', width='10cm') global_gleckler.fig.savefig(outdir + 'portraet_diagram.png', dpi=200, bbox_inches='tight') global_gleckler.fig.savefig(outdir + 'portraet_diagram.pdf', dpi=200, bbox_inches='tight') plt.close(global_gleckler.fig.number) # generate dictionary with observation labels for each variable labels_dict = {} for variable in variables: if variable not in PCFG.options.keys(): continue varoptions = PCFG.options[variable] thelabels = {} for k in varoptions.keys(): # keys of observational datasets if k == 'OPTIONS': continue else: # only add observation to legend, # if option in INI file is set if varoptions[k]['add_to_report']: # generate dictionary for GlecklerPLot legend thelabels.update( {int(varoptions[k]['gleckler_position']): k}) labels_dict.update({variable: thelabels}) del thelabels # legend for gleckler plot /// lcnt = 1 for variable in variables: if variable not in PCFG.options.keys(): continue varoptions = PCFG.options[variable] thelabels = labels_dict[variable] fl = global_gleckler._draw_legend(thelabels, title=variable.upper()) if fl is not None: rep.figure(fl, width='8cm', bbox_inches=None) fl.savefig(outdir + 'legend_portraet_' + str(lcnt).zfill(5) + '.png', bbox_inches='tight', dpi=200) plt.close(fl.number) del fl lcnt += 1 # plot model ranking between different observational datasets /// rep.subsection('Model ranking consistency') for v in global_gleckler.variables: rep.subsubsection(v.upper()) tmpfig = global_gleckler.plot_model_ranking(v, show_text=True, obslabels=labels_dict[v]) if tmpfig is not None: rep.figure(tmpfig, width='8cm', bbox_inches=None, caption='Model RANKING for different observational \ datasets: ' + v.upper()) plt.close(tmpfig.number) del tmpfig # write a table with model ranking tmp_filename = outdir + 'ranking_table_' + v + '.tex' rep.open_table() global_gleckler.write_ranking_table(v, tmp_filename, fmt='latex', obslabels=labels_dict[v]) rep.input(tmp_filename) rep.close_table(caption='Model rankings for variable ' + v.upper()) # plot absolute model error tmpfig = global_gleckler.plot_model_error(v, obslabels=labels_dict[v]) if tmpfig is not None: rep.figure(tmpfig, width='8cm', bbox_inches=None, caption='Model ERROR for different observational \ datasets: ' + v.upper()) plt.close(tmpfig.number) del tmpfig ######################################################################## # CLEAN up and finish ######################################################################## plt.close('all') rep.close() print('##########################################') print('# BENCHMARKING FINIHSED! #') print('##########################################')
def test_GlecklerPlot_InvalidNumberOfObservations(self): G = GlecklerPlot() G.add_model('echam5') G.add_model('mpi-esm') G.add_variable('ta') G.add_data('ta', 'echam5', 0.5, pos=1) G.add_data('ta', 'echam5', 0.25, pos=2) G.add_data('ta', 'echam5', -0.25, pos=3) G.add_data('ta', 'mpi-esm', -0.25, pos=4) G.add_data('ta', 'mpi-esm', -0.25, pos=5) with self.assertRaises(ValueError): G.plot()
def test_GlecklerPlot(self): G = GlecklerPlot() G.add_model('echam5') G.add_model('mpi-esm') G.add_variable('ta') G.add_variable('P') G.add_data('ta', 'echam5', 0.5,pos=1) G.add_data('P', 'echam5',0.25,pos=1) G.add_data('P', 'echam5',-0.25,pos=2) G.add_data('P', 'mpi-esm',-0.25,pos=1) G.plot() G.plot_model_error('ta') G.plot_model_ranking('ta') G.write_ranking_table('ta', self._tmpdir + os.sep + 'nix.tex', fmt='latex') self.assertTrue(os.path.exists(self._tmpdir + os.sep + 'nix.tex')) if os.path.exists(self._tmpdir + os.sep + 'nix.tex'): os.remove(self._tmpdir + os.sep + 'nix.tex') G.write_ranking_table('ta', self._tmpdir + os.sep + 'nix1', fmt='latex') self.assertTrue(os.path.exists(self._tmpdir + os.sep + 'nix1.tex')) if os.path.exists(self._tmpdir + os.sep + 'nix1.tex'): os.remove(self._tmpdir + os.sep + 'nix1.tex')
def test_GlecklerPlot_4obs(self): G = GlecklerPlot() G.add_model('echam5') G.add_model('mpi-esm') G.add_variable('ta') G.add_variable('P') G.add_data('P', 'echam5', 0.5,pos=1) G.add_data('P', 'echam5',0.25,pos=2) G.add_data('P', 'echam5',-0.25,pos=3) G.add_data('P', 'mpi-esm',-0.25,pos=4) G.plot()
def test_GlecklerPlot_InvalidNumberOfObservations(self): G = GlecklerPlot() G.add_model('echam5') G.add_model('mpi-esm') G.add_variable('ta') G.add_data('ta', 'echam5', 0.5,pos=1) G.add_data('ta', 'echam5',0.25,pos=2) G.add_data('ta', 'echam5',-0.25,pos=3) G.add_data('ta', 'mpi-esm',-0.25,pos=4) G.add_data('ta', 'mpi-esm',-0.25,pos=5) with self.assertRaises(ValueError): G.plot()
def main(): plt.close('all') if len(sys.argv) > 1: if len(sys.argv) == 2: # a single argument was provides as option if sys.argv[1] == 'init': # copy INI files and a template configuration file # to current directory create_dummy_configuration() sys.exit() else: file = sys.argv[1] # name of config file if not os.path.exists(file): raise ValueError('Configuration file can not be \ found: %s' % file) else: raise ValueError('Currently not more than one command \ line parameter supported!') else: # default file = 'pyCMBS.cfg' print('*******************************************') print('* WELCOME to pycmbs.py *') print('* Happy benchmarking ... *') print('*******************************************') #################################################################### # CONFIGURATION and OPTIONS #################################################################### # read configuration file CF = config.ConfigFile(file) # read plotting options PCFG = config.PlotOptions() PCFG.read(CF) plot_options = PCFG #################################################################### # REMOVE previous Data warnings #################################################################### outdir = CF.options['outputdir'] if outdir[-1] != os.sep: outdir += os.sep os.environ['PYCMBS_OUTPUTDIR'] = CF.options['outputdir'] os.environ['PYCMBS_OUTPUTFORMAT'] = CF.options['report_format'] os.environ['DATA_WARNING_FILE'] = outdir + 'data_warnings_' \ + CF.options['report'] + '.log' if os.path.exists(os.environ['DATA_WARNING_FILE']): os.remove(os.environ['DATA_WARNING_FILE']) # init regions REGIONS = config.AnalysisRegions() for thevar in plot_options.options.keys(): if thevar in plot_options.options.keys(): print('Variable: %s' % thevar) for k in plot_options.options[thevar].keys(): print(' Observation: %s' % k) if CF.options['basemap']: f_fast = False else: f_fast = True shift_lon = use_basemap = not f_fast ######################################################################## # TIMES ######################################################################## s_start_time = CF.start_date s_stop_time = CF.stop_date start_time = pylab.num2date(pylab.datestr2num(s_start_time)) stop_time = pylab.num2date(pylab.datestr2num(s_stop_time)) model_dict = {'rain': {'CMIP5': { 'variable': 'pr', 'unit': 'mm/day', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': 'ensmean', 'model_prefix': 'Amon', 'file_format': 'nc', 'scale_factor': 86400., 'valid_mask': 'ocean' }, 'JSBACH_RAW2': { 'variable': 'precip_acc', 'unit': 'mm/day', 'lat_name': 'lat', 'lon_name': 'lon', 'file_format': 'nc', 'scale_factor': 86400., 'valid_mask': 'global' } }, 'evap': {'CMIP5': { 'variable': 'evspsbl', 'unit': 'mm/day', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': 'ensmean', 'file_format': 'nc', 'model_prefix': 'Amon', 'scale_factor': 86400., 'valid_mask': 'ocean' } }, 'twpa': {'CMIP5': { 'variable': 'clwvi', 'unit': 'kg/m^2', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': 'ensmean', 'file_format': 'nc', 'model_prefix': 'Amon', 'scale_factor': 1., 'valid_mask': 'ocean' } }, 'wind': {'CMIP5': { 'variable': 'sfcWind', 'unit': 'm/s', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': 'ensmean', 'file_format': 'nc', 'model_prefix': 'Amon', 'scale_factor': 1., 'valid_mask': 'ocean' } }, 'wvpa': {'CMIP5': { 'variable': 'prw', 'unit': 'kg m^2', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': 'ensmean', 'file_format': 'nc', 'model_prefix': 'Amon', 'scale_factor': 1, 'valid_mask': 'ocean' } }, 'late': {'CMIP5': { 'variable': 'hfls', 'unit': 'W/m^2', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': 'ensmean', 'file_format': 'nc', 'model_prefix': 'Amon', 'scale_factor': 1, 'valid_mask': 'ocean' } }, 'hair': {'CMIP5': { 'variable': 'huss', 'unit': '$kg/kg^2$', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': 'ensmean', 'file_format': 'nc', 'model_prefix': 'Amon', 'scale_factor': 1, 'valid_mask': 'ocean' } }, 'seaice_concentration': {'CMIP5': { 'variable': 'sic', 'unit': '-', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': 'ens_mean_185001-200512', 'file_format': 'nc', 'model_prefix': 'OImon', 'scale_factor': 1, 'valid_mask': 'ocean', 'custom_path': '/home/m300028/shared/dev/svn/pyCMBS/dirk' }, 'CMIP3': { 'variable': 'SICOMO', 'unit': '-', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': '1860-2100.ext', 'file_format': 'nc', 'model_prefix': '', 'scale_factor': 100., 'valid_mask': 'ocean', 'custom_path': '/home/m300028/shared/dev/svn/pyCMBS/dirk', 'level': 0 }, }, 'seaice_extent': {'CMIP5': { 'variable': 'sic', 'unit': '-', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': 'ens_mean_185001-200512', 'file_format': 'nc', 'model_prefix': 'OImon', 'scale_factor': 1, 'valid_mask': 'ocean', 'custom_path': '/home/m300028/shared/dev/svn/pyCMBS/dirk' }, 'CMIP3': { 'variable': 'SICOMO', 'unit': '-', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': '1860-2100.ext', 'file_format': 'nc', 'model_prefix': '', 'scale_factor': 100., 'valid_mask': 'ocean', 'custom_path': '/home/m300028/shared/dev/svn/pyCMBS/dirk', 'level': 0 }, }, 'budg': {'CMIP5': { 'variable': 'budg', 'unit': 'mm/d', 'lat_name': 'lat', 'lon_name': 'lon', 'model_suffix': 'ensmean', 'file_format': 'nc', 'model_prefix': 'Amon', 'scale_factor': 86400., 'valid_mask': 'ocean', 'custom_path': '/net/nas2/export/eo/workspace/m300036/pycmbs-cmsaf/data' } }, 'sis': {'JSBACH_RAW2': { 'variable': 'swdown_acc', 'unit': '$W/m^2$', 'lat_name': 'lat', 'lon_name': 'lon', 'file_format': 'nc', 'scale_factor': 1., 'valid_mask': 'land' }, 'CMIP5': { 'valid_mask': 'land' } }, 'surface_upward_flux': {'JSBACH_RAW2': { 'variable': 'swdown_reflect_acc', 'unit': '$W/m^2$', 'lat_name': 'lat', 'lon_name': 'lon', 'file_format': 'nc', 'scale_factor': 1., 'valid_mask': 'land' } }, 'albedo_vis': {'JSBACH_RAW2': { 'variable': 'var14', 'unit': '-', 'lat_name': 'lat', 'lon_name': 'lon', 'file_format': 'nc', 'scale_factor': 1., 'valid_mask': 'land' } }, 'albedo_nir': {'JSBACH_RAW2': { 'variable': 'var15', 'unit': '-', 'lat_name': 'lat', 'lon_name': 'lon', 'file_format': 'nc', 'scale_factor': 1., 'valid_mask': 'land' } }, 'temperature': { 'JSBACH_RAW2': { 'variable': 'temp2', 'unit': 'K', 'lat_name': 'lat', 'lon_name': 'lon', 'file_format': 'nc', 'scale_factor': 1., 'valid_mask': 'global' } } } ######################################################################## # INIT METHODS ######################################################################## # names of analysis scripts for all variables --- scripts = CF.get_analysis_scripts() # get dictionary with methods how to read data for variables to be analyzed variables = CF.variables varmethods = CF.get_methods4variables(variables, model_dict) #/// READ DATA /// """ create a Model instance for each model specified in the configuration file read the data for all variables and return a list of Data objects for further processing """ model_cnt = 1 proc_models = [] for i in range(len(CF.models)): # assign model information from configuration data_dir = CF.dirs[i] model = CF.models[i] experiment = CF.experiments[i] #--- create model object and read data --- # results are stored in individual variables namex modelXXXXX if CF.dtypes[i].upper() == 'CMIP5': themodel = CMIP5Data(data_dir, model, experiment, varmethods, intervals=CF.intervals, lat_name='lat', lon_name='lon', label=model, start_time=start_time, stop_time=stop_time, shift_lon=shift_lon) elif CF.dtypes[i].upper() == 'CMIP5RAW': themodel = CMIP5RAWData(data_dir, model, experiment, varmethods, intervals=CF.intervals, lat_name='lat', lon_name='lon', label=model, start_time=start_time, stop_time=stop_time, shift_lon=shift_lon) elif CF.dtypes[i].upper() == 'JSBACH_BOT': themodel = JSBACH_BOT(data_dir, varmethods, experiment, intervals=CF.intervals, start_time=start_time, stop_time=stop_time, name=model, shift_lon=shift_lon) elif CF.dtypes[i].upper() == 'JSBACH_RAW': themodel = JSBACH_RAW(data_dir, varmethods, experiment, intervals=CF.intervals, name=model, shift_lon=shift_lon, start_time=start_time, stop_time=stop_time ) elif CF.dtypes[i].upper() == 'JSBACH_RAW2': themodel = JSBACH_RAW2(data_dir, varmethods, experiment, intervals=CF.intervals, start_time=start_time, stop_time=stop_time, name=model, shift_lon=shift_lon, model_dict=model_dict) elif CF.dtypes[i].upper() == 'CMIP3': themodel = CMIP3Data(data_dir, model, experiment, varmethods, intervals=CF.intervals, lat_name='lat', lon_name='lon', label=model, start_time=start_time, stop_time=stop_time, shift_lon=shift_lon) else: raise ValueError('Invalid model type: %s' % CF.dtypes[i]) #--- read data for current model --- # options that specify regrid options etc. themodel.plot_options = plot_options themodel.get_data() # copy current model to a variable named modelXXXX --- cmd = 'model' + str(model_cnt).zfill(4) + ' = ' \ + 'themodel.copy(); del themodel' exec(cmd) # store copy of cmip5 model in separate variable # append model to list of models --- proc_models.append('model' + str(model_cnt).zfill(4)) model_cnt += 1 ######################################################################## # MULTIMODEL MEAN # here we have now all the model and variables read. # The list of all models is contained in the variable proc_models. f_mean_model = True if f_mean_model: # calculate climatological mean values: The models contain already # climatological information in the variables[] list. Thus there is # not need to take care for the different timesteps here. This # should have been handled already in the preprocessing. # generate instance of MeanModel to store result MEANMODEL = MeanModel(varmethods, intervals=CF.intervals) # sum up all models for i in range(len(proc_models)): exec('actmodel = ' + proc_models[i] + '.copy()') MEANMODEL.add_member(actmodel) del actmodel # calculate ensemble mean MEANMODEL.ensmean() # save mean model to file MEANMODEL.save(get_temporary_directory(), prefix='MEANMODEL_' + file[:-4]) # include filename of configuration file # add mean model to general list of models to process in analysis proc_models.append('MEANMODEL') ######################################################################## # END MULTIMODEL MEAN ######################################################################## ######################################################################## # INIT reporting and plotting and diagnostics ######################################################################## # Gleckler Plot global_gleckler = GlecklerPlot() # Report rep = Report(CF.options['report'], 'pyCMBS report - ' + CF.options['report'], CF.options['author'], outdir=outdir, dpi=300, format=CF.options['report_format']) cmd = 'cp ' + os.environ['PYCMBSPATH'] + '/logo/Phytonlogo5.pdf ' + rep.outdir os.system(cmd) ######################################################################## ######################################################################## ######################################################################## # MAIN ANALYSIS LOOP: perform analysis for each model and variable ######################################################################## ######################################################################## ######################################################################## skeys = scripts.keys() for variable in variables: #/// register current variable in Gleckler Plot global_gleckler.add_variable(variable) #/// call analysis scripts for each variable for k in range(len(skeys)): if variable == skeys[k]: print 'Doing analysis for variable ... ', variable print ' ... ', scripts[variable] # model list is reformatted so it can be evaluated properly model_list = str(proc_models).replace("'", "") cmd = 'analysis.' + scripts[variable] + '(' + model_list \ + ',GP=global_gleckler,shift_lon=shift_lon, \ use_basemap=use_basemap,report=rep,\ interval=CF.intervals[variable],\ plot_options=PCFG,regions=REGIONS.regions)' eval(cmd) ######################################################################## # GLECKLER PLOT finalization ... ######################################################################## #/// generate Gleckler analysis plot for all variables and models analyzed /// global_gleckler.plot(vmin=-0.1, vmax=0.1, nclasses=16, show_value=False, ticks=[-0.1, -0.05, 0., 0.05, 0.1]) oname = outdir + 'gleckler.pkl' if os.path.exists(oname): os.remove(oname) pickle.dump(global_gleckler.models, open(outdir + 'gleckler_models.pkl', 'w')) pickle.dump(global_gleckler.variables, open(outdir + 'gleckler_variables.pkl', 'w')) pickle.dump(global_gleckler.data, open(outdir + 'gleckler_data.pkl', 'w')) pickle.dump(global_gleckler._raw_data, open(outdir + 'gleckler_rawdata.pkl', 'w')) rep.section('Summary error statistics') rep.subsection('Gleckler metric') rep.figure(global_gleckler.fig, caption='Gleckler et al. (2008) model performance index', width='10cm') global_gleckler.fig.savefig(outdir + 'portraet_diagram.png', dpi=200, bbox_inches='tight') global_gleckler.fig.savefig(outdir + 'portraet_diagram.pdf', dpi=200, bbox_inches='tight') plt.close(global_gleckler.fig.number) # generate dictionary with observation labels for each variable labels_dict = {} for variable in variables: if variable not in PCFG.options.keys(): continue varoptions = PCFG.options[variable] thelabels = {} for k in varoptions.keys(): # keys of observational datasets if k == 'OPTIONS': continue else: # only add observation to legend, # if option in INI file is set if varoptions[k]['add_to_report']: # generate dictionary for GlecklerPLot legend thelabels.update({int(varoptions[k]['gleckler_position']): k}) labels_dict.update({variable: thelabels}) del thelabels #/// legend for gleckler plot /// lcnt = 1 for variable in variables: if variable not in PCFG.options.keys(): continue varoptions = PCFG.options[variable] thelabels = labels_dict[variable] fl = global_gleckler._draw_legend(thelabels, title=variable.upper()) rep.figure(fl, width='8cm', bbox_inches=None) fl.savefig(outdir + 'legend_portraet_' + str(lcnt).zfill(5) + '.png', bbox_inches='tight', dpi=200) plt.close(fl.number) del fl lcnt += 1 #/// plot model ranking between different observational datasets /// rep.subsection('Model ranking consistency') for v in global_gleckler.variables: rep.subsubsection(v.upper()) tmpfig = global_gleckler.plot_model_ranking(v, show_text=True, obslabels=labels_dict[v]) rep.figure(tmpfig, width='8cm', bbox_inches=None, caption='Model RANKING for different observational \ datasets: ' + v.upper()) plt.close(tmpfig.number) del tmpfig # write a table with model ranking tmp_filename = outdir + 'ranking_table_' + v + '.tex' rep.open_table() global_gleckler.write_ranking_table(v, tmp_filename, fmt='latex', obslabels=labels_dict[v]) rep.input(tmp_filename) rep.close_table(caption='Model rankings for variable ' + v.upper()) # plot absolute model error tmpfig = global_gleckler.plot_model_error(v, obslabels=labels_dict[v]) rep.figure(tmpfig, width='8cm', bbox_inches=None, caption='Model ERROR for different observational \ datasets: ' + v.upper()) plt.close(tmpfig.number) del tmpfig ######################################################################## # CLEAN up and finish ######################################################################## plt.close('all') rep.close() print('##########################################') print('# BENCHMARKING FINIHSED! #') print('##########################################')
def test_gleckler_index(self): """ test Reichler index/Gleckler plot """ # generate sample data # sample data tmp = np.zeros((5, 3, 1)) tmp[:, 0, 0] = np.ones(5) * 1. tmp[:, 1, 0] = np.ones(5) * 2. tmp[:, 2, 0] = np.ones(5) * 5. # The data is like ... #| 1 | 2 | 5 | #| 1 | 2 | 5 | #| 1 | 2 | 5 | #| 1 | 2 | 5 | #| 1 | 2 | 5 | x = self.D.copy() x._temporal_subsetting(0, 4) x.data = np.ma.array(tmp, mask=tmp != tmp) x.std = np.ones(x.data.shape) x.time[0] = pl.datestr2num('2000-02-15') x.time[1] = pl.datestr2num('2000-03-15') x.time[2] = pl.datestr2num('2000-04-15') x.time[3] = pl.datestr2num('2000-05-15') x.time[4] = pl.datestr2num('2000-06-15') y = self.D.copy() y._temporal_subsetting(0, 4) tmp = np.ones(x.data.shape) # sample data 2 y.data = np.ma.array(tmp, mask=tmp != tmp) y.time[0] = pl.datestr2num('2000-02-15') y.time[1] = pl.datestr2num('2000-03-15') y.time[2] = pl.datestr2num('2000-04-15') y.time[3] = pl.datestr2num('2000-05-15') y.time[4] = pl.datestr2num('2000-06-15') # Case 1: same area weights # cell area tmp = np.ones((3, 1)) x.cell_area = tmp * 1. #| 1-1 | 2-1 | 5-1 | #| 1-1 | 2-1 | 5-1 | #| 1-1 | 2-1 | 5-1 | #| 1-1 | 2-1 | 5-1 | #| 1-1 | 2-1 | 5-1 | #=================== #| 0 | 5 | 5*4**2=5*16. = 80 | #==> E2 = sqrt(85./(15.)) D = GlecklerPlot() r = D.calc_index(x, y, 'a', 'b', time_weighting=False) wt = np.ones(5) / 5. ref = np.sqrt(((85. / 15.) * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error D = GlecklerPlot() r = D.calc_index(x, y, 'a', 'b') wt = np.asarray([29., 31., 30., 31., 30.]) wt = wt / wt.sum() ref = np.sqrt(((85. / 15.) * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error # Case 2: Different area weights # cell area tmp = np.ones((3, 1)) tmp[1, 0] = 2. x.cell_area = tmp * 1. #| 1-1=0 | 2-1=1 | 5-1=16 | #| 1-1=0 | 2-1=1 | 5-1=16 | #| 1-1=0 | 2-1=1 | 5-1=16 | #| 1-1=0 | 2-1=1 | 5-1=16 | #| 1-1=0 | 2-1=1 | 5-1=16 | #-------------------------- # w = 0.25 w = 0.5 w=0.25| #-------------------------- # 0.25*0 + 0.5 * 1 + 0.25 * 16 = 0 + 0.5 + 4 = 4.5 # the mean of that is 4.5 for each timestep # mean because the overall weights are calculated as such that # they give a total weight if 1 # diagnostic D = GlecklerPlot() r = D.calc_index(x, y, 'a', 'b', time_weighting=False) wt = np.ones(5) / 5. ref = np.sqrt((4.5 * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error wt = np.asarray([29., 31., 30., 31., 30.]) wt = wt / wt.sum() ref = np.sqrt((4.5 * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error # Case 3: use different std x.std = np.ones(x.data.shape) x.std[:, 2, 0] = 0.5 #| 1-1=0 | 2-1=1 | 5-1=16 / 0.5 | #| 1-1=0 | 2-1=1 | 5-1=16 / 0.5 | #| 1-1=0 | 2-1=1 | 5-1=16 / 0.5 | #| 1-1=0 | 2-1=1 | 5-1=16 / 0.5 | #| 1-1=0 | 2-1=1 | 5-1=16 / 0.5 | #-------------------------------- # w = 0.25 w = 0.5 w=0.25| # 0 + 0.5 + 0.25*32 = 0.5 + 8 = 8.5 D = GlecklerPlot() r = D.calc_index(x, y, 'a', 'b', time_weighting=False) wt = np.ones(5) / 5. ref = np.sqrt((8.5 * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error wt = np.asarray([29., 31., 30., 31., 30.]) wt = wt / wt.sum() ref = np.sqrt((8.5 * wt).sum()) t = np.abs(1. - r / ref) self.assertLess(t, 0.000001) # relative error