コード例 #1
0
def hanger_func_complex_SI_Guess(data, f, fit_window=None):
    ## This is complete garbage, just to get some return value
    xvals = f
    abs_data = np.abs(data)
    peaks = a_tools.peak_finder(xvals, abs_data)
      # Search for peak
    if peaks['dip'] is not None:    # look for dips first
        f0 = peaks['dip']
        amplitude_factor = -1.
    elif peaks['peak'] is not None:  # then look for peaks
        f0 = peaks['peak']
        amplitude_factor = 1.
    else:                                 # Otherwise take center of range
        f0 = np.median(xvals)
        amplitude_factor = -1.

    min_index = np.argmin(abs_data)
    max_index = np.argmax(abs_data)
    min_frequency = xvals[min_index]
    max_frequency = xvals[max_index]

    amplitude_guess = max(dm_tools.reject_outliers(abs_data))

    # Creating parameters and estimations
    S21min = (min(dm_tools.reject_outliers(abs_data)) /
              max(dm_tools.reject_outliers(abs_data)))

    Q = f0 / abs(min_frequency - max_frequency)

    Qe = abs(Q / abs(1 - S21min))
    guess_dict = {'f0': {'value': f0*1e-9,
                         'min': min(xvals)*1e-9,
                         'max': max(xvals)*1e-9},
                  'A': {'value': amplitude_guess},
                  'Qe': {'value': Qe,
                         'min': 1,
                         'max': 50e6},
                  'Ql': {'value': Q,
                         'min': 1,
                         'max': 50e6},
                  'theta': {'value': 0,
                            'min': -np.pi/2,
                            'max': np.pi/2},
                  'alpha': {'value':0,
                            'vary':True},
                  'phi_0': {'value':0,
                            'vary':True},
                  'phi_v': {'value':0,
                            'vary':True}}

    return guess_dict
コード例 #2
0
def get_peaks(dac_vector, f_vector, z_vector):
    int_interval = np.arange(20)
    plot_z=[]
    for i in range(len(dac_vector)):
        plot_z.append(a_tools.smooth(
            z_vector[i][:], 11)-np.mean(z_vector[i][1:10]))
    peaks = np.zeros(len(dac_vector))
    for i in range(len(dac_vector)):
        p_dict = a_tools.peak_finder(f_vector[i][1:-2], plot_z[i][1:-2])
        if (np.mean(plot_z[i][1:-2])-np.min(plot_z[i][1:-2])) > (np.max(plot_z[i][1:-2])-np.mean(plot_z[i][1:-2])):
            peaks[i] = p_dict['dip']
        else:
            peaks[i] = p_dict['peak']
    return peaks
コード例 #3
0
def SlopedHangerFuncAmplitudeGuess(data, f, fit_window=None):
    xvals = f
    peaks = a_tools.peak_finder(xvals, data)
      # Search for peak
    if peaks['dip'] is not None:    # look for dips first
        f0 = peaks['dip']
        amplitude_factor = -1.
    elif peaks['peak'] is not None:  # then look for peaks
        f0 = peaks['peak']
        amplitude_factor = 1.
    else:                                 # Otherwise take center of range
        f0 = np.median(xvals)
        amplitude_factor = -1.

    min_index = np.argmin(data)
    max_index = np.argmax(data)
    min_frequency = xvals[min_index]
    max_frequency = xvals[max_index]

    amplitude_guess = max(dm_tools.reject_outliers(data))

    # Creating parameters and estimations
    S21min = (min(dm_tools.reject_outliers(data)) /
              max(dm_tools.reject_outliers(data)))

    Q = f0 / abs(min_frequency - max_frequency)

    Qe = abs(Q / abs(1 - S21min))
    guess_dict = {'f0': {'value': f0*1e-9,
                         'min': min(xvals)*1e-9,
                         'max': max(xvals)*1e-9},
                  'A': {'value': amplitude_guess},
                  'Q': {'value': Q,
                        'min': 1,
                        'max': 50e6},
                  'Qe': {'value': Qe,
                         'min': 1,
                         'max': 50e6},
                  'Qi': {'expr': 'abs(1./(1./Q-1./Qe*cos(theta)))',
                         'vary': False},
                  'Qc': {'expr': 'Qe/cos(theta)',
                         'vary': False},
                  'theta': {'value': 0,
                            'min': -np.pi/2,
                            'max': np.pi/2},
                  'slope': {'value':0,
                            'vary':True}}
    return guess_dict
コード例 #4
0
    def qubit_fit(self, sweep_points, linecut_mag, **kw):
        """
        This is basically a modified copy of the 'fit_data' function of the
        Qubit_Spectroscopy_Analysis method.
        Does not support 2nd peak fitting, as it does not seem necessary.
        """
        frequency_guess = kw.get('frequency_guess', None)
        percentile = kw.get('percentile', 20)
        num_sigma_threshold = kw.get('num_sigma_threshold', 5)
        window_len_filter = kw.get('window_len_filter', 3)
        optimize = kw.pop('optimize', True)
        verbose = kw.get('verbose', False)

        self.data_dist = linecut_mag

        data_dist_smooth = a_tools.smooth(self.data_dist,
                                          window_len=window_len_filter)
        self.peaks = a_tools.peak_finder(
            sweep_points,
            data_dist_smooth,
            percentile=percentile,
            num_sigma_threshold=num_sigma_threshold,
            optimize=optimize,
            window_len=0)

        # extract highest peak -> ge transition
        if frequency_guess is not None:
            f0 = frequency_guess
            kappa_guess = (max(self.sweep_points) -
                           min(self.sweep_points)) / 20
            key = 'peak'
        elif self.peaks['dip'] is None:
            f0 = self.peaks['peak']
            kappa_guess = self.peaks['peak_width'] / 4
            key = 'peak'
        elif self.peaks['peak'] is None:
            f0 = self.peaks['dip']
            kappa_guess = self.peaks['dip_width'] / 4
            key = 'dip'
        # elif self.peaks['dip'] < self.peaks['peak']:
        elif np.abs(data_dist_smooth[self.peaks['dip_idx']]) < \
                np.abs(data_dist_smooth[self.peaks['peak_idx']]):
            f0 = self.peaks['peak']
            kappa_guess = self.peaks['peak_width'] / 4
            key = 'peak'
        # elif self.peaks['peak'] < self.peaks['dip']:
        elif np.abs(data_dist_smooth[self.peaks['dip_idx']]) > \
                np.abs(data_dist_smooth[self.peaks['peak_idx']]):
            f0 = self.peaks['dip']
            kappa_guess = self.peaks['dip_width'] / 4
            key = 'dip'
        else:  # Otherwise take center of range and raise warning
            f0 = np.median(self.sweep_points)
            kappa_guess = 0.005 * 1e9
            logging.warning('No peaks or dips have been found. Initial '
                            'frequency guess taken '
                            'as median of sweep points (f_guess={}), '
                            'initial linewidth '
                            'guess was taken as kappa_guess={}'.format(
                                f0, kappa_guess))
            key = 'peak'

        tallest_peak = f0  # the ge freq
        if verbose:
            print('Largest ' + key + ' is at ', tallest_peak)
        if f0 == self.peaks[key]:
            tallest_peak_idx = self.peaks[key + '_idx']
            if verbose:
                print('Largest ' + key + ' idx is ', tallest_peak_idx)

        amplitude_guess = np.pi * kappa_guess * \
            abs(max(self.data_dist) - min(self.data_dist))
        if key == 'dip':
            amplitude_guess = -amplitude_guess

        LorentzianModel = fit_mods.LorentzianModel

        LorentzianModel.set_param_hint('f0',
                                       min=min(self.sweep_points),
                                       max=max(self.sweep_points),
                                       value=f0)
        LorentzianModel.set_param_hint('A', value=amplitude_guess)

        LorentzianModel.set_param_hint('offset',
                                       value=np.mean(self.data_dist),
                                       vary=True)
        LorentzianModel.set_param_hint('kappa',
                                       value=kappa_guess,
                                       min=1,
                                       vary=True)
        LorentzianModel.set_param_hint('Q', expr='f0/kappa', vary=False)
        self.params = LorentzianModel.make_params()

        fit_res = LorentzianModel.fit(data=self.data_dist,
                                      f=self.sweep_points,
                                      params=self.params)

        return fit_res