コード例 #1
0
def test_computation_memory_two_constraints():
    v1 = Variable("v1", list(range(10)))
    v2 = Variable("v2", list(range(10)))
    v3 = Variable("v3", list(range(10)))
    v4 = Variable("v4", list(range(10)))
    c1 = constraint_from_str("c1", " v1 == v2", [v1, v2])
    c2 = constraint_from_str("c2", " v1 == v3", [v1, v3])
    c3 = constraint_from_str("c3", " v1 == v4", [v1, v4])
    v1_node = VariableComputationNode(v1, [c1, c2, c3])

    # here, we have 3 edges , one for each constraint
    assert mgm2.computation_memory(v1_node) == mgm2.UNIT_SIZE * 3 * 2
コード例 #2
0
def test_computation_memory_two_constraints():
    v1 = Variable('v1', list(range(10)))
    v2 = Variable('v2', list(range(10)))
    v3 = Variable('v3', list(range(10)))
    v4 = Variable('v4', list(range(10)))
    c1 = constraint_from_str('c1', ' v1 == v2', [v1, v2])
    c2 = constraint_from_str('c2', ' v1 == v3', [v1, v3])
    c3 = constraint_from_str('c3', ' v1 == v4', [v1, v4])
    v1_node = VariableComputationNode(v1, [c1, c2, c3])

    # here, we have 3 edges , one for each constraint
    assert dsa.computation_memory(v1_node) == dsa.UNIT_SIZE * 3
コード例 #3
0
def test_communication_load():
    v1 = Variable('v1', list(range(10)))
    v2 = Variable('v2', list(range(10)))
    v3 = Variable('v3', list(range(10)))
    v4 = Variable('v4', list(range(10)))
    c1 = constraint_from_str('c1', ' v1 == v2', [v1, v2])
    c2 = constraint_from_str('c2', ' v1 == v3', [v1, v3])
    c3 = constraint_from_str('c3', ' v1 == v4', [v1, v4])
    v1_node = VariableComputationNode(v1, [c1, c2, c3])

    assert mgm2.UNIT_SIZE * 10 * 10 * 3 + mgm2.HEADER_SIZE \
           == mgm2.communication_load(v1_node, 'v2')
コード例 #4
0
def test_communication_load():
    v1 = Variable("v1", list(range(10)))
    v2 = Variable("v2", list(range(10)))
    v3 = Variable("v3", list(range(10)))
    v4 = Variable("v4", list(range(10)))
    c1 = constraint_from_str("c1", " v1 == v2", [v1, v2])
    c2 = constraint_from_str("c2", " v1 == v3", [v1, v3])
    c3 = constraint_from_str("c3", " v1 == v4", [v1, v4])
    v1_node = VariableComputationNode(v1, [c1, c2, c3])

    assert mgm2.UNIT_SIZE * 10 * 10 * 3 + mgm2.HEADER_SIZE == mgm2.communication_load(
        v1_node, "v2")
コード例 #5
0
def test_fallback_memory_footprint():
    # use dsatuto as is has no computation_memory function defined
    dsa_module = load_algorithm_module("dsatuto")

    v1 = Variable("v1", [1, 2])
    comp_def = ComputationDef(
        VariableComputationNode(v1, []),
        AlgorithmDef.build_with_default_param("dsatuto"),
    )
    comp = dsa_module.DsaTutoComputation(comp_def)

    assert comp.footprint() == 1
コード例 #6
0
    def test_clear_agent(self):
        x1 = Variable("x1", list(range(3)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))

        @AsNAryFunctionRelation(x1, x2)
        def phi(x1_, x2_):
            if x1_ == x2_:
                return 1
            return 0

        @AsNAryFunctionRelation(x1, x3)
        def psi(x1_, x3_):
            if x1_ == x3_:
                return 8
            return 0

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi, psi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation.message_sender = DummySender()

        computation._neighbors_values = {"x2": 1, "x3": 1}
        computation.__value__ = 1
        computation.__nb_received_offers__ = 2
        computation._partner = x3
        computation._state = "go?"
        computation._potential_gain = 10
        computation._potential_value = 10
        computation._neighbors_values = {"x2": 1, "x3": 0}
        computation._neighbors_gains = {"x2": 5, "x3": 1}
        computation._offers = [(1, 1, "x2")]
        computation._committed = True
        computation._is_offerer = True
        computation._can_move = True

        computation._clear_agent()

        self.assertEqual(computation._potential_gain, 0)
        self.assertEqual(computation._neighbors_values, dict())
        self.assertEqual(computation._neighbors_gains, dict())
        self.assertEqual(computation._offers, [])
        self.assertIsNone(computation._partner)
        self.assertEqual(computation.__nb_received_offers__, 0)
        self.assertFalse(computation._committed)
        self.assertFalse(computation._is_offerer)
        self.assertFalse(computation._can_move)
        self.assertIsNone(computation._potential_value)
        self.assertIsNotNone(computation.current_value)
コード例 #7
0
    def test_current_local_cost_unary(self):
        x = Variable("x", list(range(5)))
        #        x2 = Variable('x2', list(range(5)))

        #        @AsNAryFunctionRelation(x, x2)
        #       def phi(x1_):
        #          return x1_
        phi = UnaryFunctionRelation("phi", x, lambda x_: 1
                                    if x_ in [0, 2, 3] else 0)
        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation.__value__ = 0
        computation2 = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation2.__value__ = 1

        self.assertEqual(computation._current_local_cost(), 1)
        self.assertEqual(computation2._current_local_cost(), 0)
コード例 #8
0
    def test_best_unary(self):
        x = Variable("x", list(range(5)))
        phi = UnaryFunctionRelation("phi", x, lambda x_: 1
                                    if x_ in [0, 2, 3] else 0)

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation.__value__ = 0
        bests, best = computation._compute_best_value()

        self.assertEqual(best, 0)
        self.assertEqual(bests, [1, 4])
コード例 #9
0
def test_3ary_constraint_2_neighbors():
    v1 = Variable('v1', [0, 1, 2, 3, 4])
    v2 = Variable('v2', [0, 1, 2, 3, 4])
    v3 = Variable('v3', [0, 1, 2, 3, 4])

    @AsNAryFunctionRelation(v1, v2, v3)
    def c1(v1_, v2_, v3_):
        return abs(v1_ - v2_ + v3_)

    node = VariableComputationNode(v1, [c1])
    comp_def = ComputationDef(node,
                              AlgorithmDef.build_with_default_param('dsa'))

    computation = DsaComputation(comp_def=comp_def)
    assert len(computation.neighbors) == 2
コード例 #10
0
    def test_value_all_neighbors_received(self):
        x1 = Variable("x1", list(range(2)))
        x2 = Variable("x2", list(range(2)))

        @AsNAryFunctionRelation(x1, x2)
        def phi(x1_, x2_):
            return x1_ + x2_

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation.message_sender = DummySender()
        computation._state = "value"
        computation.__value__ = 1
        computation.on_value_msg("x2", Mgm2ValueMessage(0), 1)

        self.assertEqual(computation._state, "offer")
        self.assertEqual(computation._neighbors_values["x2"], 0)
        self.assertEqual(computation._potential_gain, 1)
        self.assertEqual(computation._potential_value, 0)

        computation2 = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2", mode="max"),
            ))
        computation2.message_sender = DummySender()
        computation2._state = "value"
        computation2.__value__ = 1
        computation2.on_value_msg("x2", Mgm2ValueMessage(0), 1)
        self.assertEqual(computation2._state, "offer")
        self.assertEqual(computation2._neighbors_values["x2"], 0)
        self.assertEqual(computation2._potential_gain, 0)
        self.assertEqual(computation2._potential_value, 1)
コード例 #11
0
    def test_find_best_offer_max_mode_one_offerer(self):
        x1 = Variable("x1", list(range(2)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))
        x4 = Variable("x4", list(range(2)))

        @AsNAryFunctionRelation(x1, x2, x3)
        def phi(x1_, x2_, x3_):
            if x1_ == x3_:
                return 2
            elif x1_ == x2_:
                return 1
            return 0

        @AsNAryFunctionRelation(x1, x4)
        def psi(x1_, x4_):
            if x1_ == x4_:
                return 1
            return 0

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi, psi]),
                AlgorithmDef.build_with_default_param("mgm2", mode="max"),
            ))

        computation._neighbors_values = {"x2": 0, "x3": 1, "x4": 1}
        computation.__value__ = 0
        computation.__cost__ = 1

        bests, best_gain = computation._find_best_offer([("x2", {
            (0, 0): -1,
            (0, 1): -5,
            (1, 0): -3
        })])
        # global gain: -1 -5 -5

        bests2, best_gain2 = computation._find_best_offer([("x2", {
            (0, 0): -1,
            (0, 1): -5,
            (1, 0): -6
        })])
        # global gain: -1 -5 -5

        self.assertEqual(bests, [(0, 1, "x2")])
        self.assertEqual(best_gain, -5)
        self.assertEqual(set(bests2), {(0, 1, "x2"), (1, 0, "x2")})
        self.assertEqual(best_gain2, -5)
コード例 #12
0
def test_create_node_with_nary_constraint():
    d = Domain('d', 'test', [1, 2, 3])
    v1 = Variable('v1', d)
    v2 = Variable('v2', d)
    v3 = Variable('v3', d)
    c1 = constraint_from_str('c1', 'v1 * 0.5 - v2 + v3', [v1, v2, v3])

    n1 = VariableComputationNode(v1, [c1])

    assert v1 == n1.variable
    assert c1 in n1.constraints
    assert len(list(n1.links)) == 1
    assert list(n1.links)[0].has_node('v2')
    assert list(n1.links)[0].has_node('v3')
    assert 'v2' in n1.neighbors
    assert 'v3' in n1.neighbors
コード例 #13
0
    def test_binary_func(self):
        x1 = Variable("x1", list(range(2)))
        x2 = Variable("x2", list(range(2)))

        @AsNAryFunctionRelation(x1, x2)
        def phi(x1_, x2_):
            return x1_ + x2_

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        self.assertEqual(computation._compute_cost(**{"x1": 0, "x2": 0}), 0)
        self.assertEqual(computation._compute_cost(**{"x1": 0, "x2": 1}), 1)
        self.assertEqual(computation._compute_cost(**{"x1": 1, "x2": 0}), 1)
        self.assertEqual(computation._compute_cost(**{"x1": 1, "x2": 1}), 2)
コード例 #14
0
def test_build_computation_with_params():
    v1 = Variable('v1', [0, 1, 2, 3, 4])
    n1 = VariableComputationNode(v1, [])
    comp_def = ComputationDef(
        n1,
        AlgorithmDef.build_with_default_param('dsa',
                                              mode='max',
                                              params={
                                                  'variant': 'C',
                                                  'stop_cycle': 10,
                                                  'probability': 0.5
                                              }))
    c = DsaComputation(comp_def)
    assert c.mode == 'max'
    assert c.variant == 'C'
    assert c.stop_cycle == 10
    assert c.probability == 0.5
コード例 #15
0
    def test_go_reject_with_postponed_value_message(self):
        x1 = Variable("x1", list(range(3)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))

        @AsNAryFunctionRelation(x1, x2)
        def phi(x1_, x2_):
            if x1_ == x2_:
                return 1
            return 0

        @AsNAryFunctionRelation(x1, x3)
        def psi(x1_, x3_):
            if x1_ == x3_:
                return 8
            return 0

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi, psi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation.message_sender = DummySender()

        computation._neighbors_values = {"x2": 1, "x3": 1}
        computation.__value__ = 1
        computation._state = "go?"
        computation._postponed_msg["value"] = [("x2", Mgm2ValueMessage(1), 1)]
        # from Response message or accepted offer
        computation._potential_value = 0

        computation.on_go_msg("x3", Mgm2GoMessage(False), 1)

        self.assertEqual(computation._state, "value")
        self.assertEqual(computation._state, "value")
        self.assertEqual(computation._potential_gain, 0)
        self.assertIsNone(computation._potential_value)
        self.assertEqual(computation._neighbors_values, {"x2": 1})
        self.assertEqual(computation._neighbors_gains, dict())
        self.assertEqual(computation._offers, [])
        self.assertIsNone(computation._partner)
        self.assertEqual(computation.__nb_received_offers__, 0)
        self.assertFalse(computation._committed)
        self.assertFalse(computation._is_offerer)
        self.assertFalse(computation._can_move)
        self.assertEqual(computation.__value__, 1)
コード例 #16
0
def test_deploy_computation_request(orchestrated_agent):
    orchestrated_agent.start()
    orchestrated_agent.add_computation = MagicMock()

    mgt = orchestrated_agent._mgt_computation
    v1 = Variable('v1', [1, 2, 3])
    comp_node = VariableComputationNode(v1, [])
    comp_def = ComputationDef(comp_node, AlgoDef('dsa'))
    mgt.on_message('orchestrator', DeployMessage(comp_def), 0)

    # Check the computation is deployed, but not started, on the agent
    calls = orchestrated_agent.add_computation.mock_calls
    assert len(calls) == 1
    _, args, _ = calls[0]
    computation = args[0]
    assert isinstance(computation, MessagePassingComputation)
    assert not computation.is_running
コード例 #17
0
    def test_find_best_offer_min_mode_2_offerers(self):
        x1 = Variable("x1", list(range(2)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))
        x4 = Variable("x4", list(range(2)))

        @AsNAryFunctionRelation(x1, x2, x3)
        def phi(x1_, x2_, x3_):
            if x1_ == x3_:
                return 2
            elif x1_ == x2_:
                return 1
            return 0

        @AsNAryFunctionRelation(x1, x4)
        def psi(x1_, x4_):
            if x1_ == x4_:
                return 1
            return 0

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi, psi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))

        computation._neighbors_values = {"x2": 0, "x3": 0, "x4": 0}
        computation.__value__ = 0
        computation.__cost__ = 3

        bests, best_gain = computation._find_best_offer([
            ("x2", {
                (0, 0): 1,
                (0, 1): 5,
                (1, 0): 3
            }),
            ("x4", {
                (1, 0): 7,
                (0, 1): 2,
                (1, 1): 3
            }),
        ])

        self.assertEqual(set(bests), {(0, 1, "x2"), (1, 0, "x4")})
        self.assertEqual(best_gain, 8)
コード例 #18
0
    def test_binary_func_max(self):
        x1 = Variable("x1", list(range(2)))
        x2 = Variable("x2", list(range(2)))

        @AsNAryFunctionRelation(x1, x2)
        def phi(x1_, x2_):
            return x1_ + x2_

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2", mode="max"),
            ))
        computation._neighbors_values["x2"] = 1
        bests, best = computation._compute_best_value()

        self.assertEqual(bests, [1])
        self.assertEqual(best, 2)
コード例 #19
0
    def test_go_accept_no_postponed_value_message(self):
        x1 = Variable("x1", list(range(3)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))

        @AsNAryFunctionRelation(x1, x2)
        def phi(x1_, x2_):
            if x1_ == x2_:
                return 1
            return 0

        @AsNAryFunctionRelation(x1, x3)
        def psi(x1_, x3_):
            if x1_ == x3_:
                return 8
            return 0

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi, psi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation.message_sender = DummySender()
        computation._neighbors_values = {"x2": 1, "x3": 1}
        computation.__value__ = 1
        computation.__cost__ = 9
        computation._state = "go?"
        # from Response message or accepted offer
        computation._potential_gain = 10
        computation._potential_value = 0
        # Common behavior: clear agent view
        computation.on_go_msg("x3", Mgm2GoMessage(True), 1)
        self.assertEqual(computation._state, "value")
        self.test_clear_agent()

        # If cannot move
        self.assertEqual(computation.current_value, 1)
        # If can move
        computation._state = "go?"
        computation._can_move = True
        computation._potential_value = 0
        computation.on_go_msg("x3", Mgm2GoMessage(True), 1)
        self.assertEqual(computation.current_value, 0)
コード例 #20
0
    def test_enter_go_state(self):
        x1 = Variable("x1", list(range(2)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))

        @AsNAryFunctionRelation(x1, x2, x3)
        def phi(x1_, x2_, x3_):
            return x1_ + x2_ + x3_

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2", mode="max"),
            ))
        computation.message_sender = DummySender()

        computation._enter_state("go?")

        self.assertEqual(computation._state, "go?")
コード例 #21
0
def test_no_neighbors():
    x1 = Variable("x1", list(range(10)))
    cost_x1 = constraint_from_str("cost_x1", "x1 *2 ", [x1])

    computation = Mgm2Computation(
        ComputationDef(
            VariableComputationNode(x1, [cost_x1]),
            AlgorithmDef.build_with_default_param("mgm2", mode="max"),
        ))

    computation.value_selection = MagicMock()
    computation.finished = MagicMock()
    vals, cost = computation._compute_best_value()
    assert cost == 18
    assert set(vals) == {9}

    computation.on_start()
    computation.value_selection.assert_called_once_with(9, 18)
    computation.finished.assert_called_once_with()
コード例 #22
0
    def test_value_not_all_neighbors_received(self):
        x1 = Variable("x1", list(range(2)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))

        @AsNAryFunctionRelation(x1, x2, x3)
        def phi(x1_, x2_, x3_):
            return x1_ + x2_ + x3_

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2", mode="max"),
            ))
        computation._state = "value"
        computation.on_value_msg("x2", Mgm2ValueMessage(0), 1)

        self.assertEqual(computation._state, "value")
        self.assertEqual(computation._neighbors_values["x2"], 0)
コード例 #23
0
    def test_response_accept(self):
        x1 = Variable("x1", list(range(3)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))

        @AsNAryFunctionRelation(x1, x2)
        def phi(x1_, x2_):
            if x1_ == x2_:
                return 1
            return 0

        @AsNAryFunctionRelation(x1, x3)
        def psi(x1_, x3_):
            if x1_ == x3_:
                return 8
            return 0

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi, psi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation.message_sender = DummySender()
        computation._state = "answer?"
        computation._is_offerer = True
        computation._neighbors_values = {"x2": 1, "x3": 1}
        computation.__value__ = 1
        computation.__cost__ = 9
        computation._potential_gain = 9  # best unilateral move
        computation._potential_value = 2  # best unilateral move
        computation._partner = x3

        computation.on_answer_msg("x3",
                                  Mgm2ResponseMessage(True, value=0, gain=10),
                                  1)

        self.assertEqual(computation._state, "gain")
        self.assertEqual(computation._potential_gain, 10)
        self.assertEqual(computation._potential_value, 0)
コード例 #24
0
    def test_enter_gain_state(self):
        x1 = Variable("x1", list(range(2)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))

        @AsNAryFunctionRelation(x1, x2, x3)
        def phi(x1_, x2_, x3_):
            return x1_ + x2_ + x3_

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2", mode="max"),
            ))
        computation.message_sender = DummySender()

        computation._postponed_msg["gain"] = [("x2", Mgm2GainMessage(3), 1)]

        computation._enter_state("gain")

        self.assertEqual(computation._state, "gain")
        self.assertEqual(computation._postponed_msg["gain"], [])
        self.assertEqual(computation._neighbors_gains["x2"], 3)
コード例 #25
0
def test_communication_load():
    v = Variable('v1', list(range(10)))
    var_node = VariableComputationNode(v, [])
    assert dsa.UNIT_SIZE + dsa.HEADER_SIZE == dsa.communication_load(
        var_node, 'f1')
コード例 #26
0
    def test_gain_all_received(self):
        x1 = Variable("x1", list(range(3)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))

        @AsNAryFunctionRelation(x1, x2)
        def phi(x1_, x2_):
            if x1_ == x2_:
                return 1
            return 0

        @AsNAryFunctionRelation(x1, x3)
        def psi(x1_, x3_):
            if x1_ == x3_:
                return 8
            return 0

        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi, psi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation.message_sender = DummySender()

        computation._neighbors_values = {"x2": 1, "x3": 0}

        # If potential gain is 0
        computation.__value__ = 1
        computation.__cost__ = 1
        computation._potential_value = 0
        computation._potential_gain = 0
        computation._state = "gain"
        computation._neighbors_gains["x3"] = 2
        computation.on_gain_msg("x2", Mgm2GainMessage(5), 1)
        self.assertEqual(computation.current_value, 1)
        self.assertEqual(computation._state, "value")
        self.assertEqual(computation.current_cost, 1)
        # If commited and has best gain
        computation._state = "gain"
        computation.__value__ = 1
        computation.__cost__ = 1
        computation._committed = True
        computation._partner = x3
        computation._potential_gain = 10
        computation._neighbors_gains["x3"] = 10
        computation._potential_value = 0
        computation.on_gain_msg("x2", Mgm2GainMessage(5), 1)
        self.assertEqual(computation.current_value, 1)
        self.assertEqual(computation.current_cost, 1)
        self.assertTrue(computation._can_move)
        self.assertEqual(computation._state, "go?")
        # If commited and has not best gain
        computation._state = "gain"
        computation.__value__ = 1
        computation.__cost__ = 1
        computation._committed = True
        computation._partner = x3
        computation._potential_gain = 1
        computation._neighbors_gains["x3"] = 1
        computation._potential_value = 0
        computation.on_gain_msg("x2", Mgm2GainMessage(5), 1)
        self.assertEqual(computation.current_value, 1)
        self.assertEqual(computation.current_cost, 1)
        self.assertFalse(computation._can_move)
        self.assertEqual(computation._state, "go?")
        self.test_clear_agent()

        # If not committed and has best gain not alone: no test as it could (in
        # the future) be randomly chosen

        # If not committed and not best gain
        computation._state = "gain"
        computation.__value__ = 1
        computation.__cost__ = 1
        computation._committed = False
        computation._partner = None
        computation._potential_gain = 2
        computation._neighbors_gains["x3"] = 2
        computation._potential_value = 0
        computation.on_gain_msg("x2", Mgm2GainMessage(5), 1)
        self.assertEqual(computation.current_value, 1)
        self.assertEqual(computation.current_cost, 1)
        self.assertEqual(computation._state, "value")
        self.test_clear_agent()
コード例 #27
0
    def test_offer_already_has_partner(self):
        x1 = Variable("x1", list(range(2)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))

        @AsNAryFunctionRelation(x1, x2, x3)
        def phi(x1_, x2_, x3_):
            return x1_ + x2_ + x3_

        # Receives a fake offer
        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation.message_sender = DummySender()
        computation._state = "offer"
        computation._is_offerer = True
        computation.on_offer_msg("x2", Mgm2OfferMessage(), 1)
        self.assertEqual(computation._state, "offer")
        # self.assertEqual(computation._offers, [])
        # Received only fake offers
        computation2 = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation2.message_sender = DummySender()
        computation2._state = "offer"
        computation2.__nb_received_offers__ = 1
        computation2.on_offer_msg("x2", Mgm2OfferMessage(), 1)
        self.assertEqual(computation2._state, "gain")
        self.assertEqual(computation2._offers, [("x2", Mgm2OfferMessage())])
        # receives a real offer
        computation3 = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation3.message_sender = DummySender()
        computation3._state = "offer"
        computation3._is_offerer = True
        computation3.__cost__ = 15
        computation3.on_offer_msg(
            "x2", Mgm2OfferMessage({(1, 1): 8}, is_offering=True), 1)
        self.assertEqual(computation3._state, "offer")
        self.assertEqual(2, len(computation3._offers))
        self.assertEqual(computation3._potential_gain, 0)
        self.assertIsNone(computation3._potential_value)
        # Receives a real offer which is the last expected one
        computation4 = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation4.message_sender = DummySender()
        computation4._state = "offer"
        computation4._is_offerer = True
        computation4.__nb_received_offers__ = 1
        computation4.on_offer_msg(
            "x2", Mgm2OfferMessage({(1, 1): 8}, is_offering=True), 1)
        self.assertEqual(len(computation4), 3)
        self.assertEqual(computation4._state, "answer?")
        self.assertEqual(computation4._potential_gain, 0)
        self.assertIsNone(computation4._potential_value)
コード例 #28
0
    def test_offer_has_no_partner_yet(self):
        x1 = Variable("x1", list(range(2)))
        x2 = Variable("x2", list(range(2)))
        x3 = Variable("x3", list(range(2)))

        @AsNAryFunctionRelation(x1, x2, x3)
        def phi(x1_, x2_, x3_):
            return x1_ + x2_ + x3_

        # Receives a fake offer
        computation = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation.message_sender = DummySender()
        computation._state = "offer"
        computation.on_offer_msg("x2", Mgm2OfferMessage(), 1)
        self.assertEqual(computation._state, "offer")
        self.assertEqual(computation._offers, [])
        # Received only fake offers
        computation2 = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation2.message_sender = DummySender()
        computation2._state = "offer"
        computation2.__nb_received_offers__ = 1
        computation2.on_offer_msg("x2", Mgm2OfferMessage(), 1)
        self.assertEqual(computation2._state, "gain")
        self.assertEqual(computation2._offers, [])

        # Receives a real offer (but still expects other OfferMessages)
        computation3 = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation3.message_sender = DummySender()
        computation3._state = "offer"
        computation3.on_offer_msg(
            "x2", Mgm2OfferMessage({(1, 1): 8}, is_offering=True), 1)
        self.assertEqual(computation3._state, "offer")
        self.assertEqual(computation3._offers, [("x2", {(1, 1): 8})])
        # Receives a real offer and is the last expected OfferMessage
        computation4 = Mgm2Computation(
            ComputationDef(
                VariableComputationNode(x1, [phi]),
                AlgorithmDef.build_with_default_param("mgm2"),
            ))
        computation4.message_sender = DummySender()
        computation4._state = "offer"
        computation4._neighbors_values = {"x2": 0, "x3": 1}
        computation4.__value__ = 0
        computation4.__cost__ = 1
        computation4.__nb_received_offers__ = 1
        computation4.on_offer_msg(
            "x2", Mgm2OfferMessage({(1, 1): 8}, is_offering=True), 1)
        self.assertEqual(computation4._offers, [("x2", {(1, 1): 8})])
        self.assertEqual(computation4._state, "gain")
        self.assertEqual(computation4._potential_gain, 9)
        self.assertEqual(computation4._potential_value, 1)