def test_computation_memory_two_constraints(): v1 = Variable("v1", list(range(10))) v2 = Variable("v2", list(range(10))) v3 = Variable("v3", list(range(10))) v4 = Variable("v4", list(range(10))) c1 = constraint_from_str("c1", " v1 == v2", [v1, v2]) c2 = constraint_from_str("c2", " v1 == v3", [v1, v3]) c3 = constraint_from_str("c3", " v1 == v4", [v1, v4]) v1_node = VariableComputationNode(v1, [c1, c2, c3]) # here, we have 3 edges , one for each constraint assert mgm2.computation_memory(v1_node) == mgm2.UNIT_SIZE * 3 * 2
def test_computation_memory_two_constraints(): v1 = Variable('v1', list(range(10))) v2 = Variable('v2', list(range(10))) v3 = Variable('v3', list(range(10))) v4 = Variable('v4', list(range(10))) c1 = constraint_from_str('c1', ' v1 == v2', [v1, v2]) c2 = constraint_from_str('c2', ' v1 == v3', [v1, v3]) c3 = constraint_from_str('c3', ' v1 == v4', [v1, v4]) v1_node = VariableComputationNode(v1, [c1, c2, c3]) # here, we have 3 edges , one for each constraint assert dsa.computation_memory(v1_node) == dsa.UNIT_SIZE * 3
def test_communication_load(): v1 = Variable('v1', list(range(10))) v2 = Variable('v2', list(range(10))) v3 = Variable('v3', list(range(10))) v4 = Variable('v4', list(range(10))) c1 = constraint_from_str('c1', ' v1 == v2', [v1, v2]) c2 = constraint_from_str('c2', ' v1 == v3', [v1, v3]) c3 = constraint_from_str('c3', ' v1 == v4', [v1, v4]) v1_node = VariableComputationNode(v1, [c1, c2, c3]) assert mgm2.UNIT_SIZE * 10 * 10 * 3 + mgm2.HEADER_SIZE \ == mgm2.communication_load(v1_node, 'v2')
def test_communication_load(): v1 = Variable("v1", list(range(10))) v2 = Variable("v2", list(range(10))) v3 = Variable("v3", list(range(10))) v4 = Variable("v4", list(range(10))) c1 = constraint_from_str("c1", " v1 == v2", [v1, v2]) c2 = constraint_from_str("c2", " v1 == v3", [v1, v3]) c3 = constraint_from_str("c3", " v1 == v4", [v1, v4]) v1_node = VariableComputationNode(v1, [c1, c2, c3]) assert mgm2.UNIT_SIZE * 10 * 10 * 3 + mgm2.HEADER_SIZE == mgm2.communication_load( v1_node, "v2")
def test_fallback_memory_footprint(): # use dsatuto as is has no computation_memory function defined dsa_module = load_algorithm_module("dsatuto") v1 = Variable("v1", [1, 2]) comp_def = ComputationDef( VariableComputationNode(v1, []), AlgorithmDef.build_with_default_param("dsatuto"), ) comp = dsa_module.DsaTutoComputation(comp_def) assert comp.footprint() == 1
def test_clear_agent(self): x1 = Variable("x1", list(range(3))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) @AsNAryFunctionRelation(x1, x2) def phi(x1_, x2_): if x1_ == x2_: return 1 return 0 @AsNAryFunctionRelation(x1, x3) def psi(x1_, x3_): if x1_ == x3_: return 8 return 0 computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi, psi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation.message_sender = DummySender() computation._neighbors_values = {"x2": 1, "x3": 1} computation.__value__ = 1 computation.__nb_received_offers__ = 2 computation._partner = x3 computation._state = "go?" computation._potential_gain = 10 computation._potential_value = 10 computation._neighbors_values = {"x2": 1, "x3": 0} computation._neighbors_gains = {"x2": 5, "x3": 1} computation._offers = [(1, 1, "x2")] computation._committed = True computation._is_offerer = True computation._can_move = True computation._clear_agent() self.assertEqual(computation._potential_gain, 0) self.assertEqual(computation._neighbors_values, dict()) self.assertEqual(computation._neighbors_gains, dict()) self.assertEqual(computation._offers, []) self.assertIsNone(computation._partner) self.assertEqual(computation.__nb_received_offers__, 0) self.assertFalse(computation._committed) self.assertFalse(computation._is_offerer) self.assertFalse(computation._can_move) self.assertIsNone(computation._potential_value) self.assertIsNotNone(computation.current_value)
def test_current_local_cost_unary(self): x = Variable("x", list(range(5))) # x2 = Variable('x2', list(range(5))) # @AsNAryFunctionRelation(x, x2) # def phi(x1_): # return x1_ phi = UnaryFunctionRelation("phi", x, lambda x_: 1 if x_ in [0, 2, 3] else 0) computation = Mgm2Computation( ComputationDef( VariableComputationNode(x, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation.__value__ = 0 computation2 = Mgm2Computation( ComputationDef( VariableComputationNode(x, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation2.__value__ = 1 self.assertEqual(computation._current_local_cost(), 1) self.assertEqual(computation2._current_local_cost(), 0)
def test_best_unary(self): x = Variable("x", list(range(5))) phi = UnaryFunctionRelation("phi", x, lambda x_: 1 if x_ in [0, 2, 3] else 0) computation = Mgm2Computation( ComputationDef( VariableComputationNode(x, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation.__value__ = 0 bests, best = computation._compute_best_value() self.assertEqual(best, 0) self.assertEqual(bests, [1, 4])
def test_3ary_constraint_2_neighbors(): v1 = Variable('v1', [0, 1, 2, 3, 4]) v2 = Variable('v2', [0, 1, 2, 3, 4]) v3 = Variable('v3', [0, 1, 2, 3, 4]) @AsNAryFunctionRelation(v1, v2, v3) def c1(v1_, v2_, v3_): return abs(v1_ - v2_ + v3_) node = VariableComputationNode(v1, [c1]) comp_def = ComputationDef(node, AlgorithmDef.build_with_default_param('dsa')) computation = DsaComputation(comp_def=comp_def) assert len(computation.neighbors) == 2
def test_value_all_neighbors_received(self): x1 = Variable("x1", list(range(2))) x2 = Variable("x2", list(range(2))) @AsNAryFunctionRelation(x1, x2) def phi(x1_, x2_): return x1_ + x2_ computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation.message_sender = DummySender() computation._state = "value" computation.__value__ = 1 computation.on_value_msg("x2", Mgm2ValueMessage(0), 1) self.assertEqual(computation._state, "offer") self.assertEqual(computation._neighbors_values["x2"], 0) self.assertEqual(computation._potential_gain, 1) self.assertEqual(computation._potential_value, 0) computation2 = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2", mode="max"), )) computation2.message_sender = DummySender() computation2._state = "value" computation2.__value__ = 1 computation2.on_value_msg("x2", Mgm2ValueMessage(0), 1) self.assertEqual(computation2._state, "offer") self.assertEqual(computation2._neighbors_values["x2"], 0) self.assertEqual(computation2._potential_gain, 0) self.assertEqual(computation2._potential_value, 1)
def test_find_best_offer_max_mode_one_offerer(self): x1 = Variable("x1", list(range(2))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) x4 = Variable("x4", list(range(2))) @AsNAryFunctionRelation(x1, x2, x3) def phi(x1_, x2_, x3_): if x1_ == x3_: return 2 elif x1_ == x2_: return 1 return 0 @AsNAryFunctionRelation(x1, x4) def psi(x1_, x4_): if x1_ == x4_: return 1 return 0 computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi, psi]), AlgorithmDef.build_with_default_param("mgm2", mode="max"), )) computation._neighbors_values = {"x2": 0, "x3": 1, "x4": 1} computation.__value__ = 0 computation.__cost__ = 1 bests, best_gain = computation._find_best_offer([("x2", { (0, 0): -1, (0, 1): -5, (1, 0): -3 })]) # global gain: -1 -5 -5 bests2, best_gain2 = computation._find_best_offer([("x2", { (0, 0): -1, (0, 1): -5, (1, 0): -6 })]) # global gain: -1 -5 -5 self.assertEqual(bests, [(0, 1, "x2")]) self.assertEqual(best_gain, -5) self.assertEqual(set(bests2), {(0, 1, "x2"), (1, 0, "x2")}) self.assertEqual(best_gain2, -5)
def test_create_node_with_nary_constraint(): d = Domain('d', 'test', [1, 2, 3]) v1 = Variable('v1', d) v2 = Variable('v2', d) v3 = Variable('v3', d) c1 = constraint_from_str('c1', 'v1 * 0.5 - v2 + v3', [v1, v2, v3]) n1 = VariableComputationNode(v1, [c1]) assert v1 == n1.variable assert c1 in n1.constraints assert len(list(n1.links)) == 1 assert list(n1.links)[0].has_node('v2') assert list(n1.links)[0].has_node('v3') assert 'v2' in n1.neighbors assert 'v3' in n1.neighbors
def test_binary_func(self): x1 = Variable("x1", list(range(2))) x2 = Variable("x2", list(range(2))) @AsNAryFunctionRelation(x1, x2) def phi(x1_, x2_): return x1_ + x2_ computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) self.assertEqual(computation._compute_cost(**{"x1": 0, "x2": 0}), 0) self.assertEqual(computation._compute_cost(**{"x1": 0, "x2": 1}), 1) self.assertEqual(computation._compute_cost(**{"x1": 1, "x2": 0}), 1) self.assertEqual(computation._compute_cost(**{"x1": 1, "x2": 1}), 2)
def test_build_computation_with_params(): v1 = Variable('v1', [0, 1, 2, 3, 4]) n1 = VariableComputationNode(v1, []) comp_def = ComputationDef( n1, AlgorithmDef.build_with_default_param('dsa', mode='max', params={ 'variant': 'C', 'stop_cycle': 10, 'probability': 0.5 })) c = DsaComputation(comp_def) assert c.mode == 'max' assert c.variant == 'C' assert c.stop_cycle == 10 assert c.probability == 0.5
def test_go_reject_with_postponed_value_message(self): x1 = Variable("x1", list(range(3))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) @AsNAryFunctionRelation(x1, x2) def phi(x1_, x2_): if x1_ == x2_: return 1 return 0 @AsNAryFunctionRelation(x1, x3) def psi(x1_, x3_): if x1_ == x3_: return 8 return 0 computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi, psi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation.message_sender = DummySender() computation._neighbors_values = {"x2": 1, "x3": 1} computation.__value__ = 1 computation._state = "go?" computation._postponed_msg["value"] = [("x2", Mgm2ValueMessage(1), 1)] # from Response message or accepted offer computation._potential_value = 0 computation.on_go_msg("x3", Mgm2GoMessage(False), 1) self.assertEqual(computation._state, "value") self.assertEqual(computation._state, "value") self.assertEqual(computation._potential_gain, 0) self.assertIsNone(computation._potential_value) self.assertEqual(computation._neighbors_values, {"x2": 1}) self.assertEqual(computation._neighbors_gains, dict()) self.assertEqual(computation._offers, []) self.assertIsNone(computation._partner) self.assertEqual(computation.__nb_received_offers__, 0) self.assertFalse(computation._committed) self.assertFalse(computation._is_offerer) self.assertFalse(computation._can_move) self.assertEqual(computation.__value__, 1)
def test_deploy_computation_request(orchestrated_agent): orchestrated_agent.start() orchestrated_agent.add_computation = MagicMock() mgt = orchestrated_agent._mgt_computation v1 = Variable('v1', [1, 2, 3]) comp_node = VariableComputationNode(v1, []) comp_def = ComputationDef(comp_node, AlgoDef('dsa')) mgt.on_message('orchestrator', DeployMessage(comp_def), 0) # Check the computation is deployed, but not started, on the agent calls = orchestrated_agent.add_computation.mock_calls assert len(calls) == 1 _, args, _ = calls[0] computation = args[0] assert isinstance(computation, MessagePassingComputation) assert not computation.is_running
def test_find_best_offer_min_mode_2_offerers(self): x1 = Variable("x1", list(range(2))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) x4 = Variable("x4", list(range(2))) @AsNAryFunctionRelation(x1, x2, x3) def phi(x1_, x2_, x3_): if x1_ == x3_: return 2 elif x1_ == x2_: return 1 return 0 @AsNAryFunctionRelation(x1, x4) def psi(x1_, x4_): if x1_ == x4_: return 1 return 0 computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi, psi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation._neighbors_values = {"x2": 0, "x3": 0, "x4": 0} computation.__value__ = 0 computation.__cost__ = 3 bests, best_gain = computation._find_best_offer([ ("x2", { (0, 0): 1, (0, 1): 5, (1, 0): 3 }), ("x4", { (1, 0): 7, (0, 1): 2, (1, 1): 3 }), ]) self.assertEqual(set(bests), {(0, 1, "x2"), (1, 0, "x4")}) self.assertEqual(best_gain, 8)
def test_binary_func_max(self): x1 = Variable("x1", list(range(2))) x2 = Variable("x2", list(range(2))) @AsNAryFunctionRelation(x1, x2) def phi(x1_, x2_): return x1_ + x2_ computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2", mode="max"), )) computation._neighbors_values["x2"] = 1 bests, best = computation._compute_best_value() self.assertEqual(bests, [1]) self.assertEqual(best, 2)
def test_go_accept_no_postponed_value_message(self): x1 = Variable("x1", list(range(3))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) @AsNAryFunctionRelation(x1, x2) def phi(x1_, x2_): if x1_ == x2_: return 1 return 0 @AsNAryFunctionRelation(x1, x3) def psi(x1_, x3_): if x1_ == x3_: return 8 return 0 computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi, psi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation.message_sender = DummySender() computation._neighbors_values = {"x2": 1, "x3": 1} computation.__value__ = 1 computation.__cost__ = 9 computation._state = "go?" # from Response message or accepted offer computation._potential_gain = 10 computation._potential_value = 0 # Common behavior: clear agent view computation.on_go_msg("x3", Mgm2GoMessage(True), 1) self.assertEqual(computation._state, "value") self.test_clear_agent() # If cannot move self.assertEqual(computation.current_value, 1) # If can move computation._state = "go?" computation._can_move = True computation._potential_value = 0 computation.on_go_msg("x3", Mgm2GoMessage(True), 1) self.assertEqual(computation.current_value, 0)
def test_enter_go_state(self): x1 = Variable("x1", list(range(2))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) @AsNAryFunctionRelation(x1, x2, x3) def phi(x1_, x2_, x3_): return x1_ + x2_ + x3_ computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2", mode="max"), )) computation.message_sender = DummySender() computation._enter_state("go?") self.assertEqual(computation._state, "go?")
def test_no_neighbors(): x1 = Variable("x1", list(range(10))) cost_x1 = constraint_from_str("cost_x1", "x1 *2 ", [x1]) computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [cost_x1]), AlgorithmDef.build_with_default_param("mgm2", mode="max"), )) computation.value_selection = MagicMock() computation.finished = MagicMock() vals, cost = computation._compute_best_value() assert cost == 18 assert set(vals) == {9} computation.on_start() computation.value_selection.assert_called_once_with(9, 18) computation.finished.assert_called_once_with()
def test_value_not_all_neighbors_received(self): x1 = Variable("x1", list(range(2))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) @AsNAryFunctionRelation(x1, x2, x3) def phi(x1_, x2_, x3_): return x1_ + x2_ + x3_ computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2", mode="max"), )) computation._state = "value" computation.on_value_msg("x2", Mgm2ValueMessage(0), 1) self.assertEqual(computation._state, "value") self.assertEqual(computation._neighbors_values["x2"], 0)
def test_response_accept(self): x1 = Variable("x1", list(range(3))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) @AsNAryFunctionRelation(x1, x2) def phi(x1_, x2_): if x1_ == x2_: return 1 return 0 @AsNAryFunctionRelation(x1, x3) def psi(x1_, x3_): if x1_ == x3_: return 8 return 0 computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi, psi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation.message_sender = DummySender() computation._state = "answer?" computation._is_offerer = True computation._neighbors_values = {"x2": 1, "x3": 1} computation.__value__ = 1 computation.__cost__ = 9 computation._potential_gain = 9 # best unilateral move computation._potential_value = 2 # best unilateral move computation._partner = x3 computation.on_answer_msg("x3", Mgm2ResponseMessage(True, value=0, gain=10), 1) self.assertEqual(computation._state, "gain") self.assertEqual(computation._potential_gain, 10) self.assertEqual(computation._potential_value, 0)
def test_enter_gain_state(self): x1 = Variable("x1", list(range(2))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) @AsNAryFunctionRelation(x1, x2, x3) def phi(x1_, x2_, x3_): return x1_ + x2_ + x3_ computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2", mode="max"), )) computation.message_sender = DummySender() computation._postponed_msg["gain"] = [("x2", Mgm2GainMessage(3), 1)] computation._enter_state("gain") self.assertEqual(computation._state, "gain") self.assertEqual(computation._postponed_msg["gain"], []) self.assertEqual(computation._neighbors_gains["x2"], 3)
def test_communication_load(): v = Variable('v1', list(range(10))) var_node = VariableComputationNode(v, []) assert dsa.UNIT_SIZE + dsa.HEADER_SIZE == dsa.communication_load( var_node, 'f1')
def test_gain_all_received(self): x1 = Variable("x1", list(range(3))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) @AsNAryFunctionRelation(x1, x2) def phi(x1_, x2_): if x1_ == x2_: return 1 return 0 @AsNAryFunctionRelation(x1, x3) def psi(x1_, x3_): if x1_ == x3_: return 8 return 0 computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi, psi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation.message_sender = DummySender() computation._neighbors_values = {"x2": 1, "x3": 0} # If potential gain is 0 computation.__value__ = 1 computation.__cost__ = 1 computation._potential_value = 0 computation._potential_gain = 0 computation._state = "gain" computation._neighbors_gains["x3"] = 2 computation.on_gain_msg("x2", Mgm2GainMessage(5), 1) self.assertEqual(computation.current_value, 1) self.assertEqual(computation._state, "value") self.assertEqual(computation.current_cost, 1) # If commited and has best gain computation._state = "gain" computation.__value__ = 1 computation.__cost__ = 1 computation._committed = True computation._partner = x3 computation._potential_gain = 10 computation._neighbors_gains["x3"] = 10 computation._potential_value = 0 computation.on_gain_msg("x2", Mgm2GainMessage(5), 1) self.assertEqual(computation.current_value, 1) self.assertEqual(computation.current_cost, 1) self.assertTrue(computation._can_move) self.assertEqual(computation._state, "go?") # If commited and has not best gain computation._state = "gain" computation.__value__ = 1 computation.__cost__ = 1 computation._committed = True computation._partner = x3 computation._potential_gain = 1 computation._neighbors_gains["x3"] = 1 computation._potential_value = 0 computation.on_gain_msg("x2", Mgm2GainMessage(5), 1) self.assertEqual(computation.current_value, 1) self.assertEqual(computation.current_cost, 1) self.assertFalse(computation._can_move) self.assertEqual(computation._state, "go?") self.test_clear_agent() # If not committed and has best gain not alone: no test as it could (in # the future) be randomly chosen # If not committed and not best gain computation._state = "gain" computation.__value__ = 1 computation.__cost__ = 1 computation._committed = False computation._partner = None computation._potential_gain = 2 computation._neighbors_gains["x3"] = 2 computation._potential_value = 0 computation.on_gain_msg("x2", Mgm2GainMessage(5), 1) self.assertEqual(computation.current_value, 1) self.assertEqual(computation.current_cost, 1) self.assertEqual(computation._state, "value") self.test_clear_agent()
def test_offer_already_has_partner(self): x1 = Variable("x1", list(range(2))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) @AsNAryFunctionRelation(x1, x2, x3) def phi(x1_, x2_, x3_): return x1_ + x2_ + x3_ # Receives a fake offer computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation.message_sender = DummySender() computation._state = "offer" computation._is_offerer = True computation.on_offer_msg("x2", Mgm2OfferMessage(), 1) self.assertEqual(computation._state, "offer") # self.assertEqual(computation._offers, []) # Received only fake offers computation2 = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation2.message_sender = DummySender() computation2._state = "offer" computation2.__nb_received_offers__ = 1 computation2.on_offer_msg("x2", Mgm2OfferMessage(), 1) self.assertEqual(computation2._state, "gain") self.assertEqual(computation2._offers, [("x2", Mgm2OfferMessage())]) # receives a real offer computation3 = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation3.message_sender = DummySender() computation3._state = "offer" computation3._is_offerer = True computation3.__cost__ = 15 computation3.on_offer_msg( "x2", Mgm2OfferMessage({(1, 1): 8}, is_offering=True), 1) self.assertEqual(computation3._state, "offer") self.assertEqual(2, len(computation3._offers)) self.assertEqual(computation3._potential_gain, 0) self.assertIsNone(computation3._potential_value) # Receives a real offer which is the last expected one computation4 = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation4.message_sender = DummySender() computation4._state = "offer" computation4._is_offerer = True computation4.__nb_received_offers__ = 1 computation4.on_offer_msg( "x2", Mgm2OfferMessage({(1, 1): 8}, is_offering=True), 1) self.assertEqual(len(computation4), 3) self.assertEqual(computation4._state, "answer?") self.assertEqual(computation4._potential_gain, 0) self.assertIsNone(computation4._potential_value)
def test_offer_has_no_partner_yet(self): x1 = Variable("x1", list(range(2))) x2 = Variable("x2", list(range(2))) x3 = Variable("x3", list(range(2))) @AsNAryFunctionRelation(x1, x2, x3) def phi(x1_, x2_, x3_): return x1_ + x2_ + x3_ # Receives a fake offer computation = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation.message_sender = DummySender() computation._state = "offer" computation.on_offer_msg("x2", Mgm2OfferMessage(), 1) self.assertEqual(computation._state, "offer") self.assertEqual(computation._offers, []) # Received only fake offers computation2 = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation2.message_sender = DummySender() computation2._state = "offer" computation2.__nb_received_offers__ = 1 computation2.on_offer_msg("x2", Mgm2OfferMessage(), 1) self.assertEqual(computation2._state, "gain") self.assertEqual(computation2._offers, []) # Receives a real offer (but still expects other OfferMessages) computation3 = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation3.message_sender = DummySender() computation3._state = "offer" computation3.on_offer_msg( "x2", Mgm2OfferMessage({(1, 1): 8}, is_offering=True), 1) self.assertEqual(computation3._state, "offer") self.assertEqual(computation3._offers, [("x2", {(1, 1): 8})]) # Receives a real offer and is the last expected OfferMessage computation4 = Mgm2Computation( ComputationDef( VariableComputationNode(x1, [phi]), AlgorithmDef.build_with_default_param("mgm2"), )) computation4.message_sender = DummySender() computation4._state = "offer" computation4._neighbors_values = {"x2": 0, "x3": 1} computation4.__value__ = 0 computation4.__cost__ = 1 computation4.__nb_received_offers__ = 1 computation4.on_offer_msg( "x2", Mgm2OfferMessage({(1, 1): 8}, is_offering=True), 1) self.assertEqual(computation4._offers, [("x2", {(1, 1): 8})]) self.assertEqual(computation4._state, "gain") self.assertEqual(computation4._potential_gain, 9) self.assertEqual(computation4._potential_value, 1)