def test_remove_rows_means(self): print ('Preprocessing -> Performing remove_rows_means test ...') sys.stdout.flush() data = numx.random.randn(100, 1000) dataMean = numx.mean(data, axis=1).reshape(100, 1) MFdata, meanF = remove_rows_means(data, return_means=True) assert numx.all(numx.abs(dataMean - meanF) < self.epsilon) zeroMean = numx.mean(MFdata, axis=1) assert numx.all(numx.abs(zeroMean) < self.epsilon ** 2) print('successfully passed!') sys.stdout.flush()
import pydeep.misc.visualization as vis # Model imports: RBM estimator, model and trainer module import pydeep.rbm.estimator as estimator import pydeep.rbm.model as model import pydeep.rbm.trainer as trainer # Set random seed (optional) # (optional, if stochastic processes are involved we get the same results) numx.random.seed(42) # Load data (download is not existing) data = io.load_natural_image_patches('NaturalImage.mat') # Remove the mean of ech image patch separately (also works without) data = pre.remove_rows_means(data) # Set input/output dimensions v1 = 14 v2 = 14 h1 = 14 h2 = 14 # Whiten data using ZCA zca = pre.ZCA(v1 * v2) zca.train(data) data = zca.project(data) # Split into training/test data train_data = data[0:40000] test_data = data[40000:70000]