def test_image_data(self): """Test if the image data info can be parsed.""" data = { 'position': mv(DSfloat, ['-275', '-524', '168.5593']), 'orientation': mv(DSfloat, ['1', '0.0', '-1.224647e-16', '0.0', '1', '0.0']), 'pixelspacing': mv(DSfloat, ['1.074219', '1.074219']), 'rows': 512, 'columns': 512, 'samplesperpixel': 1, 'photometricinterpretation': 'MONOCHROME2', 'littlendian': True, 'patientposition': 'HFS', 'frames': 1 } self.assertEqual(self.dp.GetImageData(), data)
def test_dose_data(self): """Test if the dose data can be parsed.""" data = { 'position': mv(DSfloat, ['-228.6541915', '-419.2444776', '-122.4407']), 'orientation': mv(DSfloat, ['1', '0.0', '0.0', '0.0', '1', '0.0']), 'pixelspacing': mv(DSfloat, [2.5, 2.5]), 'rows': 129, 'columns': 194, 'samplesperpixel': 1, 'photometricinterpretation': 'MONOCHROME2', 'littlendian': True, 'frames': 98, 'doseunits': 'GY', 'dosetype': 'PHYSICAL', 'dosecomment': '', 'dosesummationtype': 'PLAN', 'dosegridscaling': 1.4e-05, 'dosemax': 1048626.0, 'lut': 253.8458085, 'fraction': '' } dosedata = self.dp.GetDoseData() # Pop the LUT numpy array assert_array_almost_equal(dosedata.pop('lut')[0][-1], data.pop('lut')) self.assertEqual(dosedata, data)
def test_dose_data(self): """Test if the dose data can be parsed.""" data = { 'position': mv( DSfloat, ['-228.6541915', '-419.2444776', '-122.4407']), 'orientation': mv(DSfloat, ['1', '0.0', '0.0', '0.0', '1', '0.0']), 'pixelspacing': mv(DSfloat, [2.5, 2.5]), 'rows': 129, 'columns': 194, 'samplesperpixel': 1, 'photometricinterpretation': 'MONOCHROME2', 'littlendian': True, 'frames': 98, 'doseunits': 'GY', 'dosetype': 'PHYSICAL', 'dosecomment': '', 'dosesummationtype': 'PLAN', 'dosegridscaling': 1.4e-05, 'dosemax': 1048626.0, 'lut': 253.8458085, 'fraction': '' } dosedata = self.dp.GetDoseData() # Pop the LUT numpy array assert_array_almost_equal( dosedata.pop('lut')[0][-1], data.pop('lut')) self.assertEqual(dosedata, data)
def getData(root_Path, doc, pat): labels = ['doctor', 'patient', 'position', 'imgName', 'contour'] dataList = [] pos_list = getDir(root_Path + '/' + doc + '/' + pat) for pos in pos_list: #对部位循环 img_list = os.listdir(root_Path + '/' + doc + '/' + pat + '/' + pos) for img in img_list: #对图片循环 img_name = img.split('_')[0] img_path = root_Path + '/' + doc + '/' + pat + '/' + pos + '/' + img patPath = root_Path + '/' + doc + '/' + pat slicepoint = convert_to_dcm(img_path, img_name, patPath) contourData = slicepoint.split(',') point = mv(DSfloat, contourData) sliceList = [] sliceList.append(doc) sliceList.append(pat) sliceList.append(pos) sliceList.append(img_name) #包含了同一切片的所有连通区域 sliceList.append(point) dataList.append(sliceList) return dataList