def test_nonlinear_mms_ldg_irk(): exact_solution = flux_functions.AdvectingSine(offset=2.0) t_initial = 0.0 t_final = 0.1 exact_solution_final = lambda x: exact_solution(x, t_final) bc = boundary.Periodic() p_func = convection_diffusion.NonlinearDiffusion.manufactured_solution # for diffusion_function in [cubed]: for diffusion_function in diffusion_functions: problem = p_func(exact_solution, diffusion_function) for num_basis_cpts in range(1, 3): irk = implicit_runge_kutta.get_time_stepper(num_basis_cpts) # for basis_class in basis.BASIS_LIST: for basis_class in [basis.LegendreBasis1D]: basis_ = basis_class(num_basis_cpts) error_list = [] for i in [1, 2]: if i == 1: delta_t = 0.01 num_elems = 20 else: delta_t = 0.005 num_elems = 40 mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems) dg_solution = basis_.project(problem.initial_condition, mesh_) # time_dependent_matrix time does matter matrix_function = lambda t, q: problem.ldg_matrix( q, t, bc, bc) rhs_function = problem.get_implicit_operator(bc, bc) solve_function = time_stepping.get_solve_function_picard( matrix_function, num_basis_cpts, mesh_.num_elems * basis_.num_basis_cpts, ) new_solution = time_stepping.time_step_loop_implicit( dg_solution, t_initial, t_final, delta_t, irk, rhs_function, solve_function, ) error = math_utils.compute_error(new_solution, exact_solution_final) error_list.append(error) # plot.plot_dg_1d(new_solution, function=exact_solution_final) order = utils.convergence_order(error_list) assert order >= 2
def test_nonlinear_mms_ldg_irk(): exact_solution = flux_functions.AdvectingSine(amplitude=0.1, offset=0.15) t_initial = 0.0 t_final = 0.1 exact_solution_final = lambda x: exact_solution(x, t_final) bc = boundary.Periodic() p_func = thin_film.ThinFilmDiffusion.manufactured_solution problem = p_func(exact_solution) for num_basis_cpts in range(1, 3): irk = implicit_runge_kutta.get_time_stepper(num_basis_cpts) cfl = 0.5 for basis_class in basis.BASIS_LIST: basis_ = basis_class(num_basis_cpts) error_list = [] n = 40 for num_elems in [n, 2 * n]: mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems) delta_t = cfl * mesh_.delta_x / exact_solution.wavespeed dg_solution = basis_.project(problem.initial_condition, mesh_) # time_dependent_matrix time does matter matrix_function = lambda t, q: problem.ldg_matrix(q, t, bc, bc, bc, bc) rhs_function = problem.get_implicit_operator(bc, bc, bc, bc) solve_function = time_stepping.get_solve_function_picard( matrix_function, num_basis_cpts, num_elems * num_basis_cpts ) new_solution = time_stepping.time_step_loop_implicit( dg_solution, t_initial, t_final, delta_t, irk, rhs_function, solve_function, ) error = math_utils.compute_error(new_solution, exact_solution_final) error_list.append(error) # plot.plot_dg_1d(new_solution, function=exact_solution_final) with open("thin_film_nonlinear_irk_test.yml", "a") as file: dict_ = dict() subdict = dict() subdict["cfl"] = cfl subdict["n"] = n subdict["error0"] = float(error_list[0]) subdict["error1"] = float(error_list[1]) subdict["order"] = float(np.log2(error_list[0] / error_list[1])) dict_[num_basis_cpts] = subdict yaml.dump(dict_, file, default_flow_style=False) order = utils.convergence_order(error_list) assert order >= num_basis_cpts
def single_run( problem, basis_, mesh_, bc, t_final, delta_t, num_picard_iterations=None ): if num_picard_iterations is None: num_picard_iterations = basis_.num_basis_cpts imex = imex_runge_kutta.get_time_stepper(basis_.num_basis_cpts) dg_solution = basis_.project(problem.initial_condition, mesh_) # weak dg form with flux_function and source term explicit_operator = problem.get_explicit_operator(bc) # ldg discretization of diffusion_function implicit_operator = problem.get_implicit_operator( bc, bc, bc, bc, include_source=False ) matrix_function = lambda t, q: problem.ldg_matrix( q, t, bc, bc, bc, bc, include_source=False ) solve_operator = time_stepping.get_solve_function_picard( matrix_function, num_picard_iterations, mesh_.num_elems * basis_.num_basis_cpts ) error_dict = dict() # def after_step_hook(dg_solution, time): # error = math_utils.compute_error( # dg_solution, lambda x: problem.exact_solution(x, time) # ) # error_dict[round(time, 8)] = error final_solution = time_stepping.time_step_loop_imex( dg_solution, 0.0, t_final, delta_t, imex, explicit_operator, implicit_operator, solve_operator, # after_step_hook ) exact_solution_final = x_functions.FrozenT(problem.exact_solution, t_final) error = math_utils.compute_error(final_solution, exact_solution_final) return (final_solution, error, error_dict)
def test_imex_nonlinear_mms(): # advection with linearized diffusion # (q_t + q_x = (f(x, t) q_xx + s(x, t)) exact_solution = flux_functions.AdvectingSine(amplitude=0.1, offset=0.15) p_class = convection_hyper_diffusion.ConvectionHyperDiffusion p_func = p_class.manufactured_solution t_initial = 0.0 bc = boundary.Periodic() for diffusion_function in [cubed]: problem = p_func(exact_solution, None, diffusion_function) cfl_list = [0.9, 0.3, 0.1] for num_basis_cpts in range(1, 4): imex = imex_runge_kutta.get_time_stepper(num_basis_cpts) cfl = cfl_list[num_basis_cpts - 1] n = 20 t_final = cfl * (1.0 / n) / exact_solution.wavespeed exact_solution_final = lambda x: exact_solution(x, t_final) for basis_class in [basis.LegendreBasis1D]: basis_ = basis_class(num_basis_cpts) error_list = [] for num_elems in [n, 2 * n]: mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems) delta_t = cfl * mesh_.delta_x / exact_solution.wavespeed dg_solution = basis_.project(problem.initial_condition, mesh_) # weak dg form with flux_function and source term explicit_operator = problem.get_explicit_operator(bc) # ldg discretization of diffusion_function implicit_operator = problem.get_implicit_operator( bc, bc, bc, bc, include_source=False) matrix_function = lambda t, q: problem.ldg_matrix( q, t, bc, bc, bc, bc, include_source=False) solve_operator = time_stepping.get_solve_function_picard( matrix_function, num_basis_cpts, num_elems * num_basis_cpts) final_solution = time_stepping.time_step_loop_imex( dg_solution, t_initial, t_final, delta_t, imex, explicit_operator, implicit_operator, solve_operator, ) error = math_utils.compute_error(final_solution, exact_solution_final) error_list.append(error) # plot.plot_dg_1d(final_solution, function=exact_solution_final) with open("hyper_diffusion_nonlinear_mms_test.yml", "a") as file: dict_ = dict() subdict = dict() subdict["cfl"] = cfl subdict["n"] = n subdict["error0"] = float(error_list[0]) subdict["error1"] = float(error_list[1]) subdict["order"] = float( np.log2(error_list[0] / error_list[1])) dict_[num_basis_cpts] = subdict yaml.dump(dict_, file, default_flow_style=False) order = utils.convergence_order(error_list) assert order >= num_basis_cpts