コード例 #1
0
    def ds_create(self, df_up, name, description=''):
        dsr = DataSetRequest()
        dsr.name = name
        dsr.description = description
        dsr.schema = Schema([
            Column(ColumnType.STRING, 'tt1'),
            Column(ColumnType.STRING, 'tt2')
        ])

        new_ds_info = self.datasets.create(dsr)

        self.utilities.stream_upload(new_ds_info['id'],
                                     df_up,
                                     warn_schema_change=False)

        return new_ds_info['id']
コード例 #2
0
def streams(domo):
    '''Streams are useful for uploading massive data sources in
    chunks, in parallel. They are also useful with data sources that
    are constantly changing/growing.
    Streams Docs: https://developer.domo.com/docs/data-apis/data
    '''
    domo.logger.info("\n**** Domo API - Stream Examples ****\n")
    streams = domo.streams

    # Define a DataSet Schema to populate the Stream Request
    dsr = DataSetRequest()
    dsr.name = 'Leonhard Euler Party'
    dsr.description = 'Mathematician Guest List'
    dsr.schema = Schema([
        Column(ColumnType.STRING, 'Friend'),
        Column(ColumnType.STRING, 'Attending')
    ])

    # Build a Stream Request
    stream_request = CreateStreamRequest(dsr, UpdateMethod.APPEND)

    # Create a Stream w/DataSet
    stream = streams.create(stream_request)
    domo.logger.info("Created Stream {} containing the new DataSet {}".format(
        stream['id'], stream['dataSet']['id']))

    # Get a Stream's metadata
    retrieved_stream = streams.get(stream['id'])
    domo.logger.info("Retrieved Stream {} containing DataSet {}".format(
        retrieved_stream['id'], retrieved_stream['dataSet']['id']))

    # List Streams
    limit = 1000
    offset = 0
    stream_list = streams.list(limit, offset)
    domo.logger.info("Retrieved a list containing {} Stream(s)".format(
        len(stream_list)))

    # Update a Stream's metadata
    stream_update = CreateStreamRequest(dsr, UpdateMethod.REPLACE)
    updated_stream = streams.update(retrieved_stream['id'], stream_update)
    domo.logger.info("Updated Stream {} to update method: {}".format(
        updated_stream['id'], updated_stream['updateMethod']))

    # Search for Streams
    stream_property = 'dataSource.name:' + dsr.name
    searched_streams = streams.search(stream_property)
    domo.logger.info("Stream search: there are {} Stream(s) with the DataSet "
                     "title: {}".format(len(searched_streams), dsr.name))

    # Create an Execution (Begin an upload process)
    execution = streams.create_execution(stream['id'])
    domo.logger.info("Created Execution {} for Stream {}".format(
        execution['id'], stream['id']))

    # Get an Execution
    retrieved_execution = streams.get_execution(stream['id'], execution['id'])
    domo.logger.info("Retrieved Execution with id: {}".format(
        retrieved_execution['id']))

    # List Executions
    execution_list = streams.list_executions(stream['id'], limit, offset)
    domo.logger.info("Retrieved a list containing {} Execution(s)".format(
        len(execution_list)))

    # Upload Data: Multiple Parts can be uploaded in parallel
    part = 1
    csv = '"Pythagoras","FALSE"\n"Alan Turing","TRUE"'
    execution = streams.upload_part(stream['id'], execution['id'], part, csv)

    part = 2
    csv = '"George Boole","TRUE"'
    execution = streams.upload_part(stream['id'], execution['id'], part, csv)

    # Commit the execution (End an upload process)
    # Executions/commits are NOT atomic
    committed_execution = streams.commit_execution(stream['id'],
                                                   execution['id'])
    domo.logger.info("Committed Execution {} on Stream {}".format(
        committed_execution['id'], stream['id']))

    # Abort a specific Execution
    execution = streams.create_execution(stream['id'])
    aborted_execution = streams.abort_execution(stream['id'], execution['id'])
    domo.logger.info("Aborted Execution {} on Stream {}".format(
        aborted_execution['id'], stream['id']))

    # Abort any Execution on a given Stream
    streams.create_execution(stream['id'])
    streams.abort_current_execution(stream['id'])
    domo.logger.info("Aborted Executions on Stream {}".format(stream['id']))

    # Delete a Stream
    streams.delete(stream['id'])
    domo.logger.info("Deleted Stream {}; the associated DataSet must be "
                     "deleted separately".format(stream['id']))

    # Delete the associated DataSet
    domo.datasets.delete(stream['dataSet']['id'])
コード例 #3
0
ファイル: GhZhToDomo.py プロジェクト: BruceP99166/Repos
    get_issues_for_repo(repo_data)

# Close json output files
json_gh_repos_file.close()
json_zh_repos_file.close()

# Domo Create ghzh_repos_history dataset
if ghzh_repo_history_dsid != "":
    ds_id = ghzh_repo_history_dsid
else:
    domo.logger.info("\n**** Create Domo dataset ghzh_repos_history ****\n")

    dsr.name = "ghzh_repos_history"
    dsr.description = ""
    dsr.schema = Schema([
        Column(ColumnType.STRING, 'RepoName'),
        Column(ColumnType.STRING, 'PipelineName'),
        Column(ColumnType.STRING, 'IssueName'),
        Column(ColumnType.DECIMAL, 'IssueNumber'),
        Column(ColumnType.STRING, 'IssueLabels'),
        Column(ColumnType.STRING, 'IssueMilestones'),
        Column(ColumnType.STRING, 'IssueAssignees'),
        Column(ColumnType.STRING, 'IssueEpics'),
        Column(ColumnType.STRING, 'IssueUrl'),
        Column(ColumnType.STRING, 'IssueOpenClosed'),
        Column(ColumnType.DECIMAL, 'IssuePoints'),
        Column(ColumnType.STRING, 'RepoId'),
        Column(ColumnType.STRING, 'IssueId'),
        Column(ColumnType.DECIMAL, '_BATCH_ID_'),
        Column(ColumnType.DATETIME, '_BATCH_LAST_RUN_')
    ])
コード例 #4
0
# if new dataset, create one in DOMO and save the ID
if config['output_dataset_id'] == None:
    # Create an instance of the SDK Client
    domo = Domo(domo_config.domo_id,
                domo_config.domo_secret,
                api_host="api.domo.com")

    # define the dataset, name, description, schema
    dsr = DataSetRequest()
    dsr.name = config['output_filename'][:-4] + ' Cannibalization Results'
    dsr.description = ''
    # Valid column types are STRING, DECIMAL, LONG, DOUBLE, DATE, DATETIME.
    # cannibalization results schema
    dsr.schema = Schema([
        Column(ColumnType.DATETIME, 'run_at'),
        Column(ColumnType.STRING, 'device'),
        Column(ColumnType.LONG, 'cu'),
        Column(ColumnType.LONG, 'cc'),
        Column(ColumnType.LONG, 'ccs'),
        Column(ColumnType.DECIMAL, 'control_conv'),
        Column(ColumnType.LONG, 'tu'),
        Column(ColumnType.LONG, 'tc'),
        Column(ColumnType.LONG, 'tcs'),
        Column(ColumnType.DECIMAL, 'test_conv'),
        Column(ColumnType.DECIMAL, 'prob_cann'),
        Column(ColumnType.DECIMAL, 'conf_int_l'),
        Column(ColumnType.DECIMAL, 'conf_int_h'),
        Column(ColumnType.DATE, 'date_start'),
        Column(ColumnType.DATE, 'date_end')
    ])
コード例 #5
0
def datasets(domo):
    '''DataSets are useful for data sources that only require
    occasional replacement. See the docs at
    https://developer.domo.com/docs/data-apis/data
    '''
    domo.logger.info("\n**** Domo API - DataSet Examples ****\n")
    datasets = domo.datasets

    # Define a DataSet Schema
    dsr = DataSetRequest()
    dsr.name = 'Leonhard Euler Party'
    dsr.description = 'Mathematician Guest List'
    dsr.schema = Schema([Column(ColumnType.STRING, 'Friend')])

    # Create a DataSet with the given Schema
    dataset = datasets.create(dsr)
    domo.logger.info("Created DataSet " + dataset['id'])

    # Get a DataSets's metadata
    retrieved_dataset = datasets.get(dataset['id'])
    domo.logger.info("Retrieved DataSet " + retrieved_dataset['id'])

    # List DataSets
    dataset_list = list(datasets.list(sort=Sorting.NAME))
    domo.logger.info("Retrieved a list containing {} DataSet(s)".format(
        len(dataset_list)))

    # Update a DataSets's metadata
    update = DataSetRequest()
    update.name = 'Leonhard Euler Party - Update'
    update.description = 'Mathematician Guest List - Update'
    update.schema = Schema([
        Column(ColumnType.STRING, 'Friend'),
        Column(ColumnType.STRING, 'Attending')
    ])
    updated_dataset = datasets.update(dataset['id'], update)
    domo.logger.info("Updated DataSet {}: {}".format(updated_dataset['id'],
                                                     updated_dataset['name']))

    # Import Data from a string
    csv_upload = '"Pythagoras","FALSE"\n"Alan Turing","TRUE"\n' \
                 '"George Boole","TRUE"'
    datasets.data_import(dataset['id'], csv_upload)
    domo.logger.info("Uploaded data to DataSet " + dataset['id'])

    # Export Data to a string
    include_csv_header = True
    csv_download = datasets.data_export(dataset['id'], include_csv_header)
    domo.logger.info("Downloaded data from DataSet {}:\n{}".format(
        dataset['id'], csv_download))

    # Export Data to a file (also returns a readable/writable file object)
    csv_file_path = './math.csv'
    include_csv_header = True
    csv_file = datasets.data_export_to_file(dataset['id'], csv_file_path,
                                            include_csv_header)
    csv_file.close()
    domo.logger.info("Downloaded data as a file from DataSet {}".format(
        dataset['id']))

    # Import Data from a file
    csv_file_path = './math.csv'
    datasets.data_import_from_file(dataset['id'], csv_file_path)
    domo.logger.info("Uploaded data from a file to DataSet {}".format(
        dataset['id']))

    # Personalized Data Policies (PDPs)

    # Build a Policy Filter (hide sensitive columns/values from users)
    pdp_filter = PolicyFilter()
    pdp_filter.column = 'Attending'  # The DataSet column to filter on
    pdp_filter.operator = FilterOperator.EQUALS
    pdp_filter.values = ['TRUE']  # The DataSet row value to filter on

    # Build the Personalized Data Policy (PDP)
    pdp_request = Policy()
    pdp_request.name = 'Only show friends attending the party'
    # A single PDP can contain multiple filters
    pdp_request.filters = [pdp_filter]
    pdp_request.type = PolicyType.USER
    # The affected user ids (restricted access by filter)
    pdp_request.users = [998, 999]
    # The affected group ids (restricted access by filter)
    pdp_request.groups = [99, 100]

    # Create the PDP
    pdp = datasets.create_pdp(dataset['id'], pdp_request)
    domo.logger.info("Created a Personalized Data Policy (PDP): "
                     "{}, id: {}".format(pdp['name'], pdp['id']))

    # Get a Personalized Data Policy (PDP)
    pdp = datasets.get_pdp(dataset['id'], pdp['id'])
    domo.logger.info("Retrieved a Personalized Data Policy (PDP):"
                     " {}, id: {}".format(pdp['name'], pdp['id']))

    # List Personalized Data Policies (PDP)
    pdp_list = datasets.list_pdps(dataset['id'])
    domo.logger.info(
        "Retrieved a list containing {} PDP(s) for DataSet {}".format(
            len(pdp_list), dataset['id']))

    # Update a Personalized Data Policy (PDP)
    # Negate the previous filter (logical NOT). Note that in this case you
    # must treat the object as a dictionary - `pdp_filter.not` is invalid
    # syntax.
    pdp_filter['not'] = True
    pdp_request.name = 'Only show friends not attending the party'
    # A single PDP can contain multiple filters
    pdp_request.filters = [pdp_filter]
    pdp = datasets.update_pdp(dataset['id'], pdp['id'], pdp_request)
    domo.logger.info(
        "Updated a Personalized Data Policy (PDP): {}, id: {}".format(
            pdp['name'], pdp['id']))

    # Delete a Personalized Data Policy (PDP)
    datasets.delete_pdp(dataset['id'], pdp['id'])
    domo.logger.info(
        "Deleted a Personalized Data Policy (PDP): {}, id: {}".format(
            pdp['name'], pdp['id']))

    # Delete a DataSet
    datasets.delete(dataset['id'])
    domo.logger.info("Deleted DataSet {}".format(dataset['id']))
コード例 #6
0
 def upload_csv(self, source, destination, engine, **kwargs):
     with open(source + "/metadata.json") as file:
         data = json.load(file)
         data_source = data["source"]
         table = data["table"]
         rows = data["rows"]
         columns = list(data["columns"])
         types = list(data["types"])
     if destination == DataSource.DOMO:
         domo = DomoAPI(self.logger, engine)
         if not self.dataset_id:
             # Create a new Dataset Schema
             if not self.dataset_name:
                 self.dataset_name = table
             schema = dict(
                 zip(
                     columns,
                     DataSource.convert_to_domo_types(source=data_source,
                                                      types=types)))
             dsr = domo.create_dataset(schema=Schema(
                 [Column(schema[col], col) for col in schema]),
                                       name=self.dataset_name,
                                       description=self.dataset_desc)
         else:
             # Get existing Dataset Schema
             dsr = domo.get_dataset(self.dataset_id)
         # Search for existing Stream
         streams = domo.search_stream(self.dataset_name)
         # Build a Stream Request
         update_method = "APPEND" if "part" in kwargs else self.update_method
         domo.stream = streams[0] if streams else domo.create_stream(
             dsr, update_method)
         self.dataset_id = domo.stream["dataSet"]["id"]
         self.logger.info(f"Stream created: {domo.stream}")
         # Create an Execution
         domo.execution = domo.create_execution(domo.stream)
         self.logger.info(f"Execution created: {domo.execution}")
         # Begin upload process
         results = domo.upload(
             mode=Mode.PARALLEL,
             source=source + "/parts",
             columns=columns,
             np_types=DataSource.convert_to_np_types(source=data_source,
                                                     types=types),
             date_columns=DataSource.select_date_columns(columns, types),
             total_records=self.chunk_size if "part" in kwargs else rows,
             chunk_size=self.chunk_size,
             part=kwargs["part"] if "part" in kwargs else None)
     # elif destination == DataSource.HANA:
     #     pass
     # elif destination == DataSource.ORACLE:
     #     pass
     elif destination == DataSource.SNOWFLAKE:
         snowflake = SnowflakeAPI(self.logger, engine, self.sf_schema,
                                  self.sf_table)
         results = snowflake.upload(
             mode=Mode.SEQUENTIAL,
             source=source + "/parts",
             columns=columns,
             np_types=DataSource.convert_to_np_types(source=data_source,
                                                     types=types),
             date_columns=DataSource.select_date_columns(columns, types),
             total_records=self.chunk_size if "part" in kwargs else rows,
             chunk_size=self.chunk_size,
             part=kwargs["part"] if "part" in kwargs else None)
     else:
         self.logger.exception(
             "Unable to support provided data destination: {}".format(
                 destination))
         raise Exception(
             "Unable to support provided data destination: {}".format(
                 destination))
     if "merge" in kwargs and kwargs["merge"]:
         self.merge_csv(source, table)
     if "keep" in kwargs and not kwargs["keep"]:
         import shutil
         shutil.rmtree(source)
     return results
コード例 #7
0
data['date'] = pd.to_datetime(data['date'])
data['reason'] = data['reason'].replace(np.nan, '')
data['nps_reason'] = data['nps_reason'].replace(np.nan,'')

csv = StringIO()

data.to_csv(csv, index=False)

if "dsid" in CONF.keys():
    pass
else:
    dsr = DataSetRequest()
    dsr.name = 'ZenDesk Sweethawk Surveys'
    dsr.description = 'Zendesk Surveys Exported from Sweethawk'
    dsr.schema = Schema([
        Column(ColumnType.LONG,'ticket'),
        Column(ColumnType.STRING, 'brand'),
        Column(ColumnType.LONG, 'score'),
        Column(ColumnType.STRING, 'reason'),
        Column(ColumnType.DECIMAL, 'nps'),
        Column(ColumnType.STRING, 'nps_reason'),
        Column(ColumnType.DATE, 'date')
    ])

    dataset = domo.datasets.create(dsr)
    CONF['dsid'] = dataset['id']
    with open('conf.json', 'w') as f:
        f.write(json.dumps(CONF))

domo.datasets.data_import(CONF['dsid'], csv.getvalue())
コード例 #8
0
            client_secret,
            logger_name='foo',
            log_level=logging.INFO,
            api_host=api_host)

dsr = DataSetRequest()
datasets = domo.datasets

# Id of the dataset when we upload.
final_dataset_id = "27fecc96-5313-485a-9cb2-31874c7c41a8"

# To create a dataset you need to create schema.
# NOTE: Will throw an error if you have wrong # of columns

data_schema = Schema([
    Column(ColumnType.STRING, "propertyid"),
    Column(ColumnType.LONG, "Check Requested"),
    Column(ColumnType.LONG, "Closed"),
    Column(ColumnType.LONG, "Doc Date"),
    Column(ColumnType.LONG, "Estoppel"),
    Column(ColumnType.LONG, "Execution"),
    Column(ColumnType.LONG, "Inventory"),
    Column(ColumnType.LONG, "Inventory - Active"),
    Column(ColumnType.LONG, "Inventory - New"),
    Column(ColumnType.LONG, "Inventory - Ready to Relist"),
    Column(ColumnType.LONG, "Inventory - Scheduled"),
    Column(ColumnType.LONG, "Inventory - Unsold"),
    Column(ColumnType.LONG, "Purchase Agreement"),
    Column(ColumnType.LONG, "Sale Date"),
    Column(ColumnType.LONG, "Transfered"),
    Column(ColumnType.LONG, "Welcome"),
コード例 #9
0
ファイル: examples.py プロジェクト: zcameron/domo-python-sdk
    def datasets(self):
        # DataSet Docs: https://developer.domo.com/docs/data-apis/data
        self.logger.info("\n**** Domo API - DataSet Examples ****\n")
        datasets = self.domo.datasets

        # Define a DataSet Schema
        dsr = DataSetRequest()
        dsr.name = 'Leonhard Euler Party'
        dsr.description = 'Mathematician Guest List'
        dsr.schema = Schema([Column(ColumnType.STRING, 'Friend')])

        # Create a DataSet with the given Schema
        dataset = datasets.create(dsr)
        self.logger.info("Created DataSet " + str(dataset.id))

        # Get a DataSets's metadata
        retrieved_dataset = datasets.get(dataset.id)
        self.logger.info("Retrieved DataSet " + str(retrieved_dataset.id))

        # List DataSets
        dataset_list = list(datasets.list(sort=Sorting.NAME))
        self.logger.info("Retrieved a list containing " +
                         str(len(dataset_list)) + " DataSet(s)")

        # Update a DataSets's metadata
        update = DataSetRequest()
        update.name = 'Leonhard Euler Party - Update'
        update.description = 'Mathematician Guest List - Update'
        update.schema = Schema([
            Column(ColumnType.STRING, 'Friend'),
            Column(ColumnType.STRING, 'Attending')
        ])
        updated_dataset = datasets.update(dataset.id, update)
        self.logger.info("Updated DataSet " + str(updated_dataset.id) + " : " +
                         updated_dataset.name)

        # Import Data from a string
        csv_upload = "\"Pythagoras\",\"FALSE\"\n\"Alan Turing\",\"TRUE\"\n\"George Boole\",\"TRUE\""
        datasets.data_import(dataset.id, csv_upload)
        self.logger.info("Uploaded data to DataSet " + str(dataset.id))

        # Export Data to a string
        include_csv_header = True
        csv_download = datasets.data_export(dataset.id, include_csv_header)
        self.logger.info("Downloaded data as a string from DataSet " +
                         str(dataset.id) + ":\n" + str(csv_download))

        # Export Data to a file (also returns the readable/writable file object)
        csv_file_path = './math.csv'
        include_csv_header = True
        csv_file = datasets.data_export_to_file(dataset.id, csv_file_path,
                                                include_csv_header)
        csv_file.close()
        self.logger.info("Downloaded data as a file from DataSet " +
                         str(dataset.id))

        # Import Data from a file
        csv_file_path = './math.csv'
        datasets.data_import_from_file(dataset.id, csv_file_path)
        self.logger.info("Uploaded data from a file to DataSet " +
                         str(dataset.id))

        # Personalized Data Policies (PDPs)

        # Build a Policy Filter (hide sensitive columns/values from users)
        pdp_filter = PolicyFilter()
        pdp_filter.column = 'Attending'  # The DataSet column to filter on
        pdp_filter.operator = FilterOperator.EQUALS
        pdp_filter.values = ['TRUE']  # The DataSet row value to filter on

        # Build the Personalized Data Policy (PDP)
        pdp_request = Policy()
        pdp_request.name = 'Only show friends attending the party'
        pdp_request.filters = [pdp_filter
                               ]  # A single PDP can contain multiple filters
        pdp_request.type = PolicyType.USER
        pdp_request.users = [
            998, 999
        ]  # The affected user ids (restricted access by filter)
        pdp_request.groups = [
            99, 100
        ]  # The affected group ids (restricted access by filter)

        # Create the PDP
        pdp = datasets.create_pdp(dataset.id, pdp_request)
        self.logger.info("Created a Personalized Data Policy (PDP): " +
                         pdp.name + ", id: " + str(pdp.id))

        # Get a Personalized Data Policy (PDP)
        retrieved_pdp = datasets.get_pdp(dataset.id, pdp.id)
        self.logger.info("Retrieved a Personalized Data Policy (PDP): " +
                         retrieved_pdp.name + ", id: " + str(retrieved_pdp.id))

        # List Personalized Data Policies (PDP)
        pdp_list = datasets.list_pdps(dataset.id)
        self.logger.info("Retrieved a list containing " + str(len(pdp_list)) +
                         " PDP(s) for DataSet " + str(dataset.id))

        # Update a Personalized Data Policy (PDP)
        pdp_filter.NOT = True  # Negate the previous filter (logical NOT)
        pdp_request.name = 'Only show friends not attending the party'
        pdp_request.filters = [pdp_filter
                               ]  # A single PDP can contain multiple filters
        pdp = datasets.update_pdp(dataset.id, pdp.id, pdp_request)
        self.logger.info("Updated a Personalized Data Policy (PDP): " +
                         pdp.name + ", id: " + str(pdp.id))

        # Delete a Personalized Data Policy (PDP)
        datasets.delete_pdp(dataset.id, pdp.id)
        self.logger.info("Deleted a Personalized Data Policy (PDP) " +
                         pdp.name + ", id: " + str(pdp.id))

        # Delete a DataSet
        datasets.delete(dataset.id)
        self.logger.info("Deleted DataSet " + str(dataset.id))
コード例 #10
0
ファイル: examples.py プロジェクト: zcameron/domo-python-sdk
    def streams(self):
        # Streams Docs: https://developer.domo.com/docs/data-apis/data
        self.logger.info("\n**** Domo API - Stream Examples ****\n")
        streams = self.domo.streams

        # Define a DataSet Schema to populate the Stream Request
        dsr = DataSetRequest()
        dsr.name = 'Leonhard Euler Party'
        dsr.description = 'Mathematician Guest List'
        dsr.schema = Schema([
            Column(ColumnType.STRING, 'Friend'),
            Column(ColumnType.STRING, 'Attending')
        ])

        # Build a Stream Request
        stream_request = CreateStreamRequest(dsr, UpdateMethod.APPEND)

        # Create a Stream w/DataSet
        stream = streams.create(stream_request)
        self.logger.info("Created Stream " + str(stream.id) +
                         " containing the new DataSet " + stream.dataSet.id)

        # Get a Stream's metadata
        retrieved_stream = streams.get(stream.id)
        self.logger.info("Retrieved Stream " + str(retrieved_stream.id) +
                         " containing DataSet " + retrieved_stream.dataSet.id)

        # List Streams
        limit = 1000
        offset = 0
        stream_list = streams.list(limit, offset)
        self.logger.info("Retrieved a list containing " +
                         str(len(stream_list)) + " Stream(s)")

        # Update a Stream's metadata
        stream_update = CreateStreamRequest(dsr, UpdateMethod.REPLACE)
        updated_stream = streams.update(retrieved_stream.id, stream_update)
        self.logger.info("Updated Stream " + str(updated_stream.id) +
                         " to update method: " + updated_stream.updateMethod)

        # Search for Streams
        stream_property = 'dataSource.name: ' + dsr.name
        searched_streams = streams.search(stream_property)
        self.logger.info("Stream search: there are " +
                         str(len(searched_streams)) +
                         " Stream(s) with the DataSet title: " + dsr.name)

        # Create an Execution (Begin an upload process)
        execution = streams.create_execution(stream.id)
        self.logger.info("Created Execution " + str(execution.id) +
                         " for Stream " + str(stream.id))

        # Get an Execution
        retrieved_execution = streams.get_execution(stream.id, execution.id)
        self.logger.info("Retrieved Execution with id: " +
                         str(retrieved_execution.id))

        # List Executions
        execution_list = streams.list_executions(stream.id, limit, offset)
        self.logger.info("Retrieved a list containing " +
                         str(len(execution_list)) + " Execution(s)")

        # Upload Data: Multiple Parts can be uploaded in parallel
        part = 1
        csv = "\"Pythagoras\",\"FALSE\"\n\"Alan Turing\",\"TRUE\"\n\"George Boole\",\"TRUE\""
        execution = streams.upload_part(stream.id, execution.id, part, csv)

        # Commit the execution (End an upload process)(Executions/commits are NOT atomic)
        committed_execution = streams.commit_execution(stream.id, execution.id)
        self.logger.info("Committed Execution " + str(committed_execution.id) +
                         " on Stream " + str(stream.id))

        # Abort a specific Execution
        execution = streams.create_execution(stream.id)
        aborted_execution = streams.abort_execution(stream.id, execution.id)
        self.logger.info("Aborted Execution " + str(aborted_execution.id) +
                         " on Stream " + str(stream.id))

        # Abort any Execution on a given Stream
        streams.create_execution(stream.id)
        streams.abort_current_execution(stream.id)
        self.logger.info("Aborted Executions on Stream " + str(stream.id))

        # Delete a Stream
        streams.delete(stream.id)
        self.logger.info("Deleted Stream " + str(stream.id) +
                         "; the associated DataSet must be deleted separately")

        # Delete the associated DataSet
        self.domo.datasets.delete(stream.dataSet.id)