class ProprioceptionSystem(pydrake.systems.framework.LeafSystem): """ Calculates J, M, Cv, etc. based on arm state. """ def __init__(self): pydrake.systems.framework.LeafSystem.__init__(self) # Physical parameters self.manipulator_plant = MultibodyPlant(config.DT) manipulator.data["add_plant_function"](self.manipulator_plant) self.manipulator_plant.Finalize() self.manipulator_plant_context = \ self.manipulator_plant.CreateDefaultContext() self.nq_manipulator = \ self.manipulator_plant.get_actuation_input_port().size() self.DeclareVectorInputPort("state", BasicVector(self.nq_manipulator * 2)) self.DeclareVectorOutputPort( "q", pydrake.systems.framework.BasicVector(self.nq_manipulator), self.output_q) self.DeclareVectorOutputPort( "v", pydrake.systems.framework.BasicVector(self.nq_manipulator), self.output_v) self.DeclareVectorOutputPort( "tau_g", pydrake.systems.framework.BasicVector(self.nq_manipulator), self.output_tau_g) self.DeclareVectorOutputPort( "M", pydrake.systems.framework.BasicVector( self.nq_manipulator * self.nq_manipulator), self.output_M) self.DeclareVectorOutputPort( "Cv", pydrake.systems.framework.BasicVector(self.nq_manipulator), self.output_Cv) self.DeclareVectorOutputPort( "J", pydrake.systems.framework.BasicVector(6 * self.nq_manipulator), self.output_J) self.DeclareVectorOutputPort( "J_translational", pydrake.systems.framework.BasicVector(3 * self.nq_manipulator), self.output_J_translational) self.DeclareVectorOutputPort( "J_rotational", pydrake.systems.framework.BasicVector(3 * self.nq_manipulator), self.output_J_rotational) self.DeclareVectorOutputPort("Jdot_qdot", pydrake.systems.framework.BasicVector(6), self.output_Jdot_qdot) # =========================== CALC FUNCTIONS ========================== def calc_q(self, context): state = self.GetInputPort("state").Eval(context) q = state[:self.nq_manipulator] return q def calc_v(self, context): state = self.GetInputPort("state").Eval(context) v = state[self.nq_manipulator:] return v def calc_J(self, context): self.update_plant(context) contact_body = self.manipulator_plant.GetBodyByName( manipulator.data["contact_body_name"]) J = self.manipulator_plant.CalcJacobianSpatialVelocity( self.manipulator_plant_context, JacobianWrtVariable.kV, contact_body.body_frame(), [0, 0, 0], self.manipulator_plant.world_frame(), self.manipulator_plant.world_frame()) return J # ========================== OUTPUT FUNCTIONS ========================= def output_q(self, context, output): q = self.calc_q(context) output.SetFromVector(q.flatten()) def output_v(self, context, output): v = self.calc_v(context) output.SetFromVector(v.flatten()) def output_tau_g(self, context, output): self.update_plant(context) tau_g = self.manipulator_plant.CalcGravityGeneralizedForces( self.manipulator_plant_context) output.SetFromVector(tau_g.flatten()) def output_M(self, context, output): self.update_plant(context) M = self.manipulator_plant.CalcMassMatrixViaInverseDynamics( self.manipulator_plant_context) output.SetFromVector(M.flatten()) def output_Cv(self, context, output): self.update_plant(context) Cv = self.manipulator_plant.CalcBiasTerm( self.manipulator_plant_context) output.SetFromVector(Cv.flatten()) def output_J(self, context, output): J = self.calc_J(context) output.SetFromVector(J.flatten()) def output_J_translational(self, context, output): J = self.calc_J(context) J_translational = J[3:, :] output.SetFromVector(J_translational.flatten()) def output_J_rotational(self, context, output): J = self.calc_J(context) J_rotational = J[:3, :] output.SetFromVector(J_rotational.flatten()) def output_Jdot_qdot(self, context, output): self.update_plant(context) contact_body = self.manipulator_plant.GetBodyByName( manipulator.data["contact_body_name"]) Jdot_qdot_raw = self.manipulator_plant.CalcBiasSpatialAcceleration( self.manipulator_plant_context, JacobianWrtVariable.kV, contact_body.body_frame(), [0, 0, 0], self.manipulator_plant.world_frame(), self.manipulator_plant.world_frame()) Jdot_qdot = list(Jdot_qdot_raw.rotational()) + \ list(Jdot_qdot_raw.translational()) output.SetFromVector(Jdot_qdot) # ========================== OTHER FUNCTIONS ========================== def update_plant(self, context): self.manipulator_plant.SetPositions(self.manipulator_plant_context, self.calc_q(context)) self.manipulator_plant.SetVelocities(self.manipulator_plant_context, self.calc_v(context))
acrobot = Parser(plant).AddModelFromFile(acro_file) plant.Finalize() # The CONTEXT of the system stores information, such as the state, about the multibody plant. The context is necessary to calculate values such as the inertia matrix context = plant.CreateDefaultContext() ##% [markdown] # # The default context is not very interesting, so let's set some nonzero values for the configuration and velocity variables q = [pi / 4, pi / 4] v = [0.1, -0.1] plant.SetPositions(context, q) plant.SetVelocities(context, v) #%% [markdown] # # DYNAMICS # We can get the mass matrix via inverse dynamics (note that CalcMassMatrix is not available in pyDrake): M = plant.CalcMassMatrixViaInverseDynamics(context) print('Acrobot mass matrix at q = ', q, ' is M = ') print(M) # We can also get the combined coriolis, centripetal, and gyroscopic effects: Cv = plant.CalcBiasTerm(context) print("Acrobot bias term at q = ", q, "and v = ", v, "is Cv = ") print(Cv) # We can separately get the gravitational effects N = plant.CalcGravityGeneralizedForces(context) print("Acrobot gravitational generalized forces at q = ", q, " is N = ") print(N) # Evaluating the controls nU = plant.num_actuated_dofs() nA = plant.num_actuators() print('Acrobot has ', nU, ' actuated joint(s) and ', nA, ' actuator(s)') # We can get the actuation matrix, a permutation matrix as: