def test_math_utils(self): a = initializeAutoDiff([1, 2, 3]) np.testing.assert_array_equal(autoDiffToValueMatrix(a), np.array([[1, 2, 3]]).T) np.testing.assert_array_equal(autoDiffToGradientMatrix(a), np.eye(3)) a, b = initializeAutoDiffTuple([1], [2, 3]) np.testing.assert_array_equal(autoDiffToValueMatrix(a), np.array([[1]])) np.testing.assert_array_equal(autoDiffToValueMatrix(b), np.array([[2, 3]]).T) np.testing.assert_array_equal(autoDiffToGradientMatrix(a), np.eye(1, 3)) np.testing.assert_array_equal(autoDiffToGradientMatrix(b), np.hstack((np.zeros((2, 1)), np.eye(2))))
def test_math_utils(self): a = initializeAutoDiff([1, 2, 3]) np.testing.assert_array_equal(autoDiffToValueMatrix(a), np.array([[1, 2, 3]]).T) np.testing.assert_array_equal(autoDiffToGradientMatrix(a), np.eye(3)) a, b = initializeAutoDiffTuple([1], [2, 3]) np.testing.assert_array_equal(autoDiffToValueMatrix(a), np.array([[1]])) np.testing.assert_array_equal(autoDiffToValueMatrix(b), np.array([[2, 3]]).T) np.testing.assert_array_equal(autoDiffToGradientMatrix(a), np.eye(1, 3)) np.testing.assert_array_equal(autoDiffToGradientMatrix(b), np.hstack((np.zeros((2, 1)), np.eye(2)))) c_grad = [[2, 4, 5], [1, -1, 0]] c = initializeAutoDiffGivenGradientMatrix([2, 3], c_grad) np.testing.assert_array_equal(autoDiffToValueMatrix(c), np.array([2, 3]).reshape((2, 1))) np.testing.assert_array_equal(autoDiffToGradientMatrix(c), np.array(c_grad))
def test_deprecated_math_utils(self): with catch_drake_warnings(expected_count=1): a = initializeAutoDiff([1, 2, 3]) with catch_drake_warnings(expected_count=1): np.testing.assert_array_equal(autoDiffToValueMatrix(a), np.array([[1, 2, 3]]).T) with catch_drake_warnings(expected_count=1): np.testing.assert_array_equal(autoDiffToGradientMatrix(a), np.eye(3)) with catch_drake_warnings(expected_count=1): a, b = initializeAutoDiffTuple([1], [2, 3]) with catch_drake_warnings(expected_count=1): np.testing.assert_array_equal(autoDiffToValueMatrix(a), np.array([[1]])) with catch_drake_warnings(expected_count=1): np.testing.assert_array_equal(autoDiffToValueMatrix(b), np.array([[2, 3]]).T) with catch_drake_warnings(expected_count=1): np.testing.assert_array_equal(autoDiffToGradientMatrix(a), np.eye(1, 3)) with catch_drake_warnings(expected_count=1): np.testing.assert_array_equal( autoDiffToGradientMatrix(b), np.hstack((np.zeros((2, 1)), np.eye(2)))) c_grad = [[2, 4, 5], [1, -1, 0]] with catch_drake_warnings(expected_count=1): c = initializeAutoDiffGivenGradientMatrix([2, 3], c_grad) with catch_drake_warnings(expected_count=1): np.testing.assert_array_equal(autoDiffToValueMatrix(c), np.array([2, 3]).reshape((2, 1))) with catch_drake_warnings(expected_count=1): np.testing.assert_array_equal(autoDiffToGradientMatrix(c), np.array(c_grad))