コード例 #1
0
    def testConnectPlanarSceneGraphVisualizer(self):
        """Cart-Pole with simple geometry."""
        file_name = FindResourceOrThrow(
            "drake/examples/multibody/cart_pole/cart_pole.sdf")
        builder = DiagramBuilder()
        cart_pole, scene_graph = AddMultibodyPlantSceneGraph(builder, 0.0)
        Parser(plant=cart_pole).AddModelFromFile(file_name)
        cart_pole.Finalize()

        visualizer = ConnectPlanarSceneGraphVisualizer(
            builder=builder, scene_graph=scene_graph, xlim=[0.3, 1.2])
        self.assertIsInstance(visualizer, PlanarSceneGraphVisualizer)
        # Confirm that arguments are passed through.
        self.assertEqual(visualizer.ax.get_xlim(), (0.3, 1.2))

        vis2 = ConnectPlanarSceneGraphVisualizer(
            builder=builder,
            scene_graph=scene_graph,
            output_port=scene_graph.get_pose_bundle_output_port())
        vis2.set_name("vis2")
        self.assertIsInstance(vis2, PlanarSceneGraphVisualizer)

        diagram = builder.Build()
        context = diagram.CreateDefaultContext()
        diagram.Publish(context)
コード例 #2
0
    def connect_visualizers(builder, plant, scene_graph):
        # Connect this to drake_visualizer.
        DrakeVisualizer.AddToBuilder(builder=builder, scene_graph=scene_graph)

        # Connect to Meshcat.  If the consuming application needs to connect,
        # e.g., JointSliders, the meshcat instance is required.
        meshcat = None
        if args.meshcat:
            meshcat = Meshcat()
            meshcat_vis_params = MeshcatVisualizerParams()
            meshcat_vis_params.role = args.meshcat_role
            MeshcatVisualizerCpp.AddToBuilder(builder=builder,
                                              scene_graph=scene_graph,
                                              meshcat=meshcat,
                                              params=meshcat_vis_params)
            if args.browser_new is not None:
                url = meshcat.web_url()
                webbrowser.open(url=url, new=args.browser_new)
        else:
            if args.browser_new is not None:
                args_parser.error("-w / --open-window require --meshcat")

        # Connect to PyPlot.
        if args.pyplot:
            pyplot = ConnectPlanarSceneGraphVisualizer(builder, scene_graph)

        return meshcat
コード例 #3
0
    def connect_visualizers(builder, plant, scene_graph,
                            publish_contacts=True):
        # Connect this to drake_visualizer or meldis. Meldis provides
        # simultaneous visualization of illustration and proximity geometry.
        ApplyVisualizationConfig(
            config=VisualizationConfig(publish_contacts=publish_contacts),
            plant=plant,
            scene_graph=scene_graph,
            builder=builder)

        # Connect to Meshcat.  If the consuming application needs to connect,
        # e.g., JointSliders, the meshcat instance is required.
        meshcat = None
        if args.meshcat:
            meshcat = Meshcat()
            meshcat_vis_params = MeshcatVisualizerParams()
            meshcat_vis_params.role = args.meshcat_role
            MeshcatVisualizer.AddToBuilder(
                builder=builder, scene_graph=scene_graph, meshcat=meshcat,
                params=meshcat_vis_params)
            if args.browser_new is not None:
                url = meshcat.web_url()
                webbrowser.open(url=url, new=args.browser_new)
        else:
            if args.browser_new is not None:
                args_parser.error("-w / --open-window require --meshcat")

        # Connect to PyPlot.
        if args.pyplot:
            pyplot = ConnectPlanarSceneGraphVisualizer(builder, scene_graph)

        return meshcat
コード例 #4
0
def run_pendulum_example(args):
    builder = DiagramBuilder()
    plant, scene_graph = AddMultibodyPlantSceneGraph(builder, 0.0)
    parser = Parser(plant)
    parser.AddModelFromFile(FindResourceOrThrow(
        "drake/examples/pendulum/Pendulum.urdf"))
    plant.Finalize()

    T_VW = np.array([[1., 0., 0., 0.],
                     [0., 0., 1., 0.],
                     [0., 0., 0., 1.]])
    visualizer = ConnectPlanarSceneGraphVisualizer(
        builder, scene_graph, T_VW=T_VW, xlim=[-1.2, 1.2], ylim=[-1.2, 1.2])

    if args.playback:
        visualizer.start_recording()

    diagram = builder.Build()
    simulator = Simulator(diagram)
    simulator.Initialize()
    simulator.set_target_realtime_rate(1.0)

    # Fix the input port to zero.
    plant_context = diagram.GetMutableSubsystemContext(
        plant, simulator.get_mutable_context())
    plant.get_actuation_input_port().FixValue(
        plant_context, np.zeros(plant.num_actuators()))
    plant_context.SetContinuousState([0.5, 0.1])
    simulator.AdvanceTo(args.duration)

    if args.playback:
        visualizer.stop_recording()
        ani = visualizer.get_recording_as_animation()
        # Playback the recording and save the output.
        ani.save("{}/pend_playback.mp4".format(temp_directory()), fps=30)
コード例 #5
0
ファイル: show_model.py プロジェクト: RussTedrake/drake
    def connect_visualizers(builder, plant, scene_graph):
        # Connect this to drake_visualizer.
        DrakeVisualizer.AddToBuilder(builder=builder, scene_graph=scene_graph)

        # Connect to Meshcat.
        if args.meshcat is not None:
            meshcat_viz = ConnectMeshcatVisualizer(builder,
                                                   scene_graph,
                                                   zmq_url=args.meshcat)

        # Connect to PyPlot.
        if args.pyplot:
            pyplot = ConnectPlanarSceneGraphVisualizer(builder, scene_graph)
コード例 #6
0
    def testConnectPlanarSceneGraphVisualizer(self):
        """Cart-Pole with simple geometry."""
        file_name = FindResourceOrThrow(
            "drake/examples/multibody/cart_pole/cart_pole.sdf")
        builder = DiagramBuilder()
        cart_pole, scene_graph = AddMultibodyPlantSceneGraph(builder, 0.0)
        Parser(plant=cart_pole).AddModelFromFile(file_name)
        cart_pole.Finalize()

        # The visualizer will connect to query object and calling draw will not
        # spawn any deprecation warnings.
        vis_query_object = ConnectPlanarSceneGraphVisualizer(
            builder=builder, scene_graph=scene_graph, xlim=[0.3, 1.2])
        self.assertIsInstance(vis_query_object, PlanarSceneGraphVisualizer)
        # Confirm that arguments are passed through.
        self.assertEqual(vis_query_object.ax.get_xlim(), (0.3, 1.2))

        # The visualizer will connect to the provided pose bundle port and
        # calling draw will generate a warning.
        vis_pose_bundle = ConnectPlanarSceneGraphVisualizer(
            builder=builder,
            scene_graph=scene_graph,
            output_port=scene_graph.get_pose_bundle_output_port())
        vis_pose_bundle.set_name("vis_pose_bundle")
        self.assertIsInstance(vis_pose_bundle, PlanarSceneGraphVisualizer)

        diagram = builder.Build()
        diagram_context = diagram.CreateDefaultContext()
        vis_query_object_context = diagram.GetMutableSubsystemContext(
            vis_query_object, diagram_context)
        vis_pose_bundle_context = diagram.GetMutableSubsystemContext(
            vis_pose_bundle, diagram_context)

        # Note: we can't simply call diagram.Publish(diagram_context) because
        # the visualizer isn't set to be visible; as such, no drawing work
        # will be done.
        vis_query_object.draw(vis_query_object_context)
        with catch_drake_warnings(expected_count=1):
            vis_pose_bundle.draw(vis_pose_bundle_context)
コード例 #7
0
    def testConnectPlanarSceneGraphVisualizer(self):
        """Cart-Pole with simple geometry."""
        file_name = FindResourceOrThrow(
            "drake/examples/multibody/cart_pole/cart_pole.sdf")
        builder = DiagramBuilder()
        cart_pole, scene_graph = AddMultibodyPlantSceneGraph(builder, 0.0)
        Parser(plant=cart_pole).AddModelFromFile(file_name)
        cart_pole.Finalize()

        # The function auto connects to the scene graph query object port.
        vis_auto_connect = ConnectPlanarSceneGraphVisualizer(
            builder=builder, scene_graph=scene_graph, xlim=[0.3, 1.2])
        self.assertIsInstance(vis_auto_connect, PlanarSceneGraphVisualizer)
        # Confirm that arguments are passed through.
        self.assertEqual(vis_auto_connect.ax.get_xlim(), (0.3, 1.2))

        # The function connects visualizer to provided query object port.
        vis_port_connect = ConnectPlanarSceneGraphVisualizer(
            builder=builder,
            scene_graph=scene_graph,
            output_port=scene_graph.get_query_output_port())
        vis_port_connect.set_name("vis_port_connect")
        self.assertIsInstance(vis_port_connect, PlanarSceneGraphVisualizer)

        diagram = builder.Build()
        diagram_context = diagram.CreateDefaultContext()
        vis_auto_connect_context = diagram.GetMutableSubsystemContext(
            vis_auto_connect, diagram_context)
        vis_port_connect_context = diagram.GetMutableSubsystemContext(
            vis_port_connect, diagram_context)

        # Note: we can't simply call diagram.Publish(diagram_context) because
        # the visualizer isn't set to be visible; as such, no drawing work
        # will be done.
        vis_auto_connect.draw(vis_auto_connect_context)
        vis_port_connect.draw(vis_port_connect_context)
コード例 #8
0
def run_manipulation_example(args):
    builder = DiagramBuilder()
    station = builder.AddSystem(ManipulationStation(time_step=0.005))
    station.SetupManipulationClassStation()
    station.Finalize()

    plant = station.get_multibody_plant()
    scene_graph = station.get_scene_graph()
    query_object_output_port = station.GetOutputPort("geometry_query")

    # Side-on view of the station.
    T_VW = np.array([[1., 0., 0., 0.],
                     [0., 0., 1., 0.],
                     [0., 0., 0., 1.]])
    ConnectPlanarSceneGraphVisualizer(
        builder, scene_graph, query_object_output_port, T_VW=T_VW,
        xlim=[-0.5, 1.0], ylim=[-1.2, 1.2], draw_period=0.1)

    if args.playback:
        visualizer.start_recording()

    diagram = builder.Build()
    simulator = Simulator(diagram)
    simulator.Initialize()
    simulator.set_target_realtime_rate(1.0)

    # Fix the control inputs to zero.
    station_context = diagram.GetMutableSubsystemContext(
        station, simulator.get_mutable_context())
    station.GetInputPort("iiwa_position").FixValue(
        station_context, station.GetIiwaPosition(station_context))
    station.GetInputPort("iiwa_feedforward_torque").FixValue(
        station_context, np.zeros(7))
    station.GetInputPort("wsg_position").FixValue(
        station_context, np.zeros(1))
    station.GetInputPort("wsg_force_limit").FixValue(
        station_context, [40.0])
    simulator.AdvanceTo(args.duration)

    if args.playback:
        visualizer.stop_recording()
        ani = visualizer.get_recording_as_animation()
        # Playback the recording and save the output.
        ani.save("{}/manip_playback.mp4".format(temp_directory()), fps=30)
コード例 #9
0
ファイル: joint_teleop.py プロジェクト: rpoyner-tri/drake
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--target_realtime_rate",
        type=float,
        default=1.0,
        help="Desired rate relative to real time.  See documentation for "
        "Simulator::set_target_realtime_rate() for details.")
    parser.add_argument("--duration",
                        type=float,
                        default=np.inf,
                        help="Desired duration of the simulation in seconds.")
    parser.add_argument(
        "--hardware",
        action='store_true',
        help="Use the ManipulationStationHardwareInterface instead of an "
        "in-process simulation.")
    parser.add_argument("--test",
                        action='store_true',
                        help="Disable opening the gui window for testing.")
    parser.add_argument(
        '--setup',
        type=str,
        default='manipulation_class',
        help="The manipulation station setup to simulate. ",
        choices=['manipulation_class', 'clutter_clearing', 'planar'])
    parser.add_argument(
        "-w",
        "--open-window",
        dest="browser_new",
        action="store_const",
        const=1,
        default=None,
        help="Open the MeshCat display in a new browser window.")
    args = parser.parse_args()

    builder = DiagramBuilder()

    # NOTE: the meshcat instance is always created in order to create the
    # teleop controls (joint sliders and open/close gripper button).  When
    # args.hardware is True, the meshcat server will *not* display robot
    # geometry, but it will contain the joint sliders and open/close gripper
    # button in the "Open Controls" tab in the top-right of the viewing server.
    meshcat = Meshcat()

    if args.hardware:
        # TODO(russt): Replace this hard-coded camera serial number with a
        # config file.
        camera_ids = ["805212060544"]
        station = builder.AddSystem(
            ManipulationStationHardwareInterface(camera_ids))
        station.Connect(wait_for_cameras=False)
    else:
        station = builder.AddSystem(ManipulationStation())

        # Initializes the chosen station type.
        if args.setup == 'manipulation_class':
            station.SetupManipulationClassStation()
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/" +
                "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))
        elif args.setup == 'clutter_clearing':
            station.SetupClutterClearingStation()
            ycb_objects = CreateClutterClearingYcbObjectList()
            for model_file, X_WObject in ycb_objects:
                station.AddManipulandFromFile(model_file, X_WObject)
        elif args.setup == 'planar':
            station.SetupPlanarIiwaStation()
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/" +
                "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))

        station.Finalize()

        geometry_query_port = station.GetOutputPort("geometry_query")
        DrakeVisualizer.AddToBuilder(builder, geometry_query_port)
        meshcat_visualizer = MeshcatVisualizerCpp.AddToBuilder(
            builder=builder,
            query_object_port=geometry_query_port,
            meshcat=meshcat)

        if args.setup == 'planar':
            meshcat.Set2dRenderMode()
            pyplot_visualizer = ConnectPlanarSceneGraphVisualizer(
                builder, station.get_scene_graph(), geometry_query_port)

    if args.browser_new is not None:
        url = meshcat.web_url()
        webbrowser.open(url=url, new=args.browser_new)

    teleop = builder.AddSystem(
        JointSliders(meshcat=meshcat, plant=station.get_controller_plant()))

    num_iiwa_joints = station.num_iiwa_joints()
    filter = builder.AddSystem(
        FirstOrderLowPassFilter(time_constant=2.0, size=num_iiwa_joints))
    builder.Connect(teleop.get_output_port(0), filter.get_input_port(0))
    builder.Connect(filter.get_output_port(0),
                    station.GetInputPort("iiwa_position"))

    wsg_buttons = builder.AddSystem(SchunkWsgButtons(meshcat=meshcat))
    builder.Connect(wsg_buttons.GetOutputPort("position"),
                    station.GetInputPort("wsg_position"))
    builder.Connect(wsg_buttons.GetOutputPort("force_limit"),
                    station.GetInputPort("wsg_force_limit"))

    # When in regression test mode, log our joint velocities to later check
    # that they were sufficiently quiet.
    if args.test:
        iiwa_velocities = builder.AddSystem(VectorLogSink(num_iiwa_joints))
        builder.Connect(station.GetOutputPort("iiwa_velocity_estimated"),
                        iiwa_velocities.get_input_port(0))
    else:
        iiwa_velocities = None

    diagram = builder.Build()
    simulator = Simulator(diagram)

    # This is important to avoid duplicate publishes to the hardware interface:
    simulator.set_publish_every_time_step(False)

    station_context = diagram.GetMutableSubsystemContext(
        station, simulator.get_mutable_context())

    station.GetInputPort("iiwa_feedforward_torque").FixValue(
        station_context, np.zeros(num_iiwa_joints))

    # If the diagram is only the hardware interface, then we must advance it a
    # little bit so that first LCM messages get processed. A simulated plant is
    # already publishing correct positions even without advancing, and indeed
    # we must not advance a simulated plant until the sliders and filters have
    # been initialized to match the plant.
    if args.hardware:
        simulator.AdvanceTo(1e-6)

    # Eval the output port once to read the initial positions of the IIWA.
    q0 = station.GetOutputPort("iiwa_position_measured").Eval(station_context)
    teleop.SetPositions(q0)
    filter.set_initial_output_value(
        diagram.GetMutableSubsystemContext(filter,
                                           simulator.get_mutable_context()),
        q0)

    simulator.set_target_realtime_rate(args.target_realtime_rate)
    simulator.AdvanceTo(args.duration)

    # Ensure that our initialization logic was correct, by inspecting our
    # logged joint velocities.
    if args.test:
        iiwa_velocities_log = iiwa_velocities.FindLog(simulator.get_context())
        for time, qdot in zip(iiwa_velocities_log.sample_times(),
                              iiwa_velocities_log.data().transpose()):
            # TODO(jwnimmer-tri) We should be able to do better than a 40
            # rad/sec limit, but that's the best we can enforce for now.
            if qdot.max() > 0.1:
                print(f"ERROR: large qdot {qdot} at time {time}")
                sys.exit(1)
コード例 #10
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--target_realtime_rate",
        type=float,
        default=1.0,
        help="Desired rate relative to real time.  See documentation for "
        "Simulator::set_target_realtime_rate() for details.")
    parser.add_argument("--duration",
                        type=float,
                        default=np.inf,
                        help="Desired duration of the simulation in seconds.")
    parser.add_argument(
        "--hardware",
        action='store_true',
        help="Use the ManipulationStationHardwareInterface instead of an "
        "in-process simulation.")
    parser.add_argument("--test",
                        action='store_true',
                        help="Disable opening the gui window for testing.")
    parser.add_argument(
        "--filter_time_const",
        type=float,
        default=0.1,
        help="Time constant for the first order low pass filter applied to"
        "the teleop commands")
    parser.add_argument(
        "--velocity_limit_factor",
        type=float,
        default=1.0,
        help="This value, typically between 0 and 1, further limits the "
        "iiwa14 joint velocities. It multiplies each of the seven "
        "pre-defined joint velocity limits. "
        "Note: The pre-defined velocity limits are specified by "
        "iiwa14_velocity_limits, found in this python file.")
    parser.add_argument(
        '--setup',
        type=str,
        default='manipulation_class',
        help="The manipulation station setup to simulate. ",
        choices=['manipulation_class', 'clutter_clearing', 'planar'])
    parser.add_argument(
        '--schunk_collision_model',
        type=str,
        default='box',
        help="The Schunk collision model to use for simulation. ",
        choices=['box', 'box_plus_fingertip_spheres'])
    MeshcatVisualizer.add_argparse_argument(parser)
    args = parser.parse_args()

    builder = DiagramBuilder()

    if args.hardware:
        station = builder.AddSystem(ManipulationStationHardwareInterface())
        station.Connect(wait_for_cameras=False)
    else:
        station = builder.AddSystem(ManipulationStation())

        if args.schunk_collision_model == "box":
            schunk_model = SchunkCollisionModel.kBox
        elif args.schunk_collision_model == "box_plus_fingertip_spheres":
            schunk_model = SchunkCollisionModel.kBoxPlusFingertipSpheres

        # Initializes the chosen station type.
        if args.setup == 'manipulation_class':
            station.SetupManipulationClassStation(schunk_model=schunk_model)
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/" +
                "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))
        elif args.setup == 'clutter_clearing':
            station.SetupClutterClearingStation(schunk_model=schunk_model)
            ycb_objects = CreateClutterClearingYcbObjectList()
            for model_file, X_WObject in ycb_objects:
                station.AddManipulandFromFile(model_file, X_WObject)
        elif args.setup == 'planar':
            station.SetupPlanarIiwaStation(schunk_model=schunk_model)
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/" +
                "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))

        station.Finalize()

        # If using meshcat, don't render the cameras, since RgbdCamera
        # rendering only works with drake-visualizer. Without this check,
        # running this code in a docker container produces libGL errors.
        geometry_query_port = station.GetOutputPort("geometry_query")
        if args.meshcat:
            meshcat = ConnectMeshcatVisualizer(builder,
                                               output_port=geometry_query_port,
                                               zmq_url=args.meshcat,
                                               open_browser=args.open_browser)
            if args.setup == 'planar':
                meshcat.set_planar_viewpoint()

        elif args.setup == 'planar':
            ConnectPlanarSceneGraphVisualizer(builder,
                                              station.get_scene_graph(),
                                              geometry_query_port)

        else:
            DrakeVisualizer.AddToBuilder(builder, geometry_query_port)
            image_to_lcm_image_array = builder.AddSystem(
                ImageToLcmImageArrayT())
            image_to_lcm_image_array.set_name("converter")
            for name in station.get_camera_names():
                cam_port = (image_to_lcm_image_array.DeclareImageInputPort[
                    PixelType.kRgba8U]("camera_" + name))
                builder.Connect(
                    station.GetOutputPort("camera_" + name + "_rgb_image"),
                    cam_port)

            image_array_lcm_publisher = builder.AddSystem(
                LcmPublisherSystem.Make(channel="DRAKE_RGBD_CAMERA_IMAGES",
                                        lcm_type=lcmt_image_array,
                                        lcm=None,
                                        publish_period=0.1,
                                        use_cpp_serializer=True))
            image_array_lcm_publisher.set_name("rgbd_publisher")
            builder.Connect(
                image_to_lcm_image_array.image_array_t_msg_output_port(),
                image_array_lcm_publisher.get_input_port(0))

    robot = station.get_controller_plant()
    params = DifferentialInverseKinematicsParameters(robot.num_positions(),
                                                     robot.num_velocities())

    time_step = 0.005
    params.set_timestep(time_step)
    # True velocity limits for the IIWA14 (in rad, rounded down to the first
    # decimal)
    iiwa14_velocity_limits = np.array([1.4, 1.4, 1.7, 1.3, 2.2, 2.3, 2.3])
    if args.setup == 'planar':
        # Extract the 3 joints that are not welded in the planar version.
        iiwa14_velocity_limits = iiwa14_velocity_limits[1:6:2]
        # The below constant is in body frame.
        params.set_end_effector_velocity_gain([1, 0, 0, 0, 1, 1])
    # Stay within a small fraction of those limits for this teleop demo.
    factor = args.velocity_limit_factor
    params.set_joint_velocity_limits(
        (-factor * iiwa14_velocity_limits, factor * iiwa14_velocity_limits))
    differential_ik = builder.AddSystem(
        DifferentialIK(robot, robot.GetFrameByName("iiwa_link_7"), params,
                       time_step))

    builder.Connect(differential_ik.GetOutputPort("joint_position_desired"),
                    station.GetInputPort("iiwa_position"))

    teleop = builder.AddSystem(EndEffectorTeleop(args.setup == 'planar'))
    if args.test:
        teleop.window.withdraw()  # Don't display the window when testing.
    filter = builder.AddSystem(
        FirstOrderLowPassFilter(time_constant=args.filter_time_const, size=6))

    builder.Connect(teleop.get_output_port(0), filter.get_input_port(0))
    builder.Connect(filter.get_output_port(0),
                    differential_ik.GetInputPort("rpy_xyz_desired"))

    wsg_buttons = builder.AddSystem(SchunkWsgButtons(teleop.window))
    builder.Connect(wsg_buttons.GetOutputPort("position"),
                    station.GetInputPort("wsg_position"))
    builder.Connect(wsg_buttons.GetOutputPort("force_limit"),
                    station.GetInputPort("wsg_force_limit"))

    # When in regression test mode, log our joint velocities to later check
    # that they were sufficiently quiet.
    num_iiwa_joints = station.num_iiwa_joints()
    if args.test:
        iiwa_velocities = builder.AddSystem(VectorLogSink(num_iiwa_joints))
        builder.Connect(station.GetOutputPort("iiwa_velocity_estimated"),
                        iiwa_velocities.get_input_port(0))
    else:
        iiwa_velocities = None

    diagram = builder.Build()
    simulator = Simulator(diagram)
    iiwa_velocities_log = iiwa_velocities.FindLog(simulator.get_context())

    # This is important to avoid duplicate publishes to the hardware interface:
    simulator.set_publish_every_time_step(False)

    station_context = diagram.GetMutableSubsystemContext(
        station, simulator.get_mutable_context())

    station.GetInputPort("iiwa_feedforward_torque").FixValue(
        station_context, np.zeros(num_iiwa_joints))

    # If the diagram is only the hardware interface, then we must advance it a
    # little bit so that first LCM messages get processed. A simulated plant is
    # already publishing correct positions even without advancing, and indeed
    # we must not advance a simulated plant until the sliders and filters have
    # been initialized to match the plant.
    if args.hardware:
        simulator.AdvanceTo(1e-6)

    q0 = station.GetOutputPort("iiwa_position_measured").Eval(station_context)
    differential_ik.parameters.set_nominal_joint_position(q0)

    teleop.SetPose(differential_ik.ForwardKinematics(q0))
    filter.set_initial_output_value(
        diagram.GetMutableSubsystemContext(filter,
                                           simulator.get_mutable_context()),
        teleop.get_output_port(0).Eval(
            diagram.GetMutableSubsystemContext(
                teleop, simulator.get_mutable_context())))
    differential_ik.SetPositions(
        diagram.GetMutableSubsystemContext(differential_ik,
                                           simulator.get_mutable_context()),
        q0)

    simulator.set_target_realtime_rate(args.target_realtime_rate)
    simulator.AdvanceTo(args.duration)

    # Ensure that our initialization logic was correct, by inspecting our
    # logged joint velocities.
    if args.test:
        for time, qdot in zip(iiwa_velocities_log.sample_times(),
                              iiwa_velocities_log.data().transpose()):
            # TODO(jwnimmer-tri) We should be able to do better than a 40
            # rad/sec limit, but that's the best we can enforce for now.
            if qdot.max() > 0.1:
                print(f"ERROR: large qdot {qdot} at time {time}")
                sys.exit(1)