コード例 #1
0
    def test_saturation(self):
        system = Saturation((0., -1., 3.), (1., 2., 4.))
        context = system.CreateDefaultContext()
        output = system.AllocateOutput()

        def mytest(input, expected):
            system.get_input_port(0).FixValue(context, input)
            system.CalcOutput(context, output)
            self.assertTrue(np.allclose(output.get_vector_data(
                0).CopyToVector(), expected))

        mytest((-5., 5., 4.), (0., 2., 4.))
        mytest((.4, 0., 3.5), (.4, 0., 3.5))
コード例 #2
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--num_samples",
        type=int,
        default=50,
        help="Number of Monte Carlo samples to use to estimate performance.")
    parser.add_argument("--torque_limit",
                        type=float,
                        default=2.0,
                        help="Torque limit of the pendulum.")
    args = parser.parse_args()
    if args.torque_limit < 0:
        raise InvalidArgumentError("Please supply a nonnegative torque limit.")

    # Assemble the Pendulum plant.
    builder = DiagramBuilder()
    pendulum = builder.AddSystem(MultibodyPlant(0.0))
    file_name = FindResourceOrThrow("drake/examples/pendulum/Pendulum.urdf")
    Parser(pendulum).AddModelFromFile(file_name)
    pendulum.WeldFrames(pendulum.world_frame(),
                        pendulum.GetFrameByName("base"))
    pendulum.Finalize()

    # Set the pendulum to start at uniformly random
    # positions (but always zero velocity).
    elbow = pendulum.GetMutableJointByName("theta")
    upright_theta = np.pi
    theta_expression = Variable(name="theta",
                                type=Variable.Type.RANDOM_UNIFORM) * 2. * np.pi
    elbow.set_random_angle_distribution(theta_expression)

    # Set up LQR, with high position gains to try to ensure the
    # ROA is close to the theoretical torque-limited limit.
    Q = np.diag([100., 1.])
    R = np.identity(1) * 0.01
    linearize_context = pendulum.CreateDefaultContext()
    linearize_context.SetContinuousState(np.array([upright_theta, 0.]))
    actuation_port = pendulum.get_actuation_input_port()
    actuation_port.FixValue(linearize_context, 0)
    controller = builder.AddSystem(
        LinearQuadraticRegulator(pendulum, linearize_context, Q, R,
                                 np.zeros(0), actuation_port.get_index()))

    # Apply the torque limit.
    torque_limit = args.torque_limit
    torque_limiter = builder.AddSystem(
        Saturation(min_value=np.array([-torque_limit]),
                   max_value=np.array([torque_limit])))

    builder.Connect(controller.get_output_port(0),
                    torque_limiter.get_input_port(0))
    builder.Connect(torque_limiter.get_output_port(0),
                    pendulum.get_actuation_input_port())
    builder.Connect(pendulum.get_state_output_port(),
                    controller.get_input_port(0))
    diagram = builder.Build()

    # Perform the Monte Carlo simulation.
    def make_simulator(generator):
        ''' Create a simulator for the system
            using the given generator. '''
        simulator = Simulator(diagram)
        simulator.set_target_realtime_rate(0)
        simulator.Initialize()
        return simulator

    def calc_wrapped_error(system, context):
        ''' Given a context from the end of the simulation,
            calculate an error -- which for this stabilizing
            task is the distance from the
            fixed point. '''
        state = diagram.GetSubsystemContext(
            pendulum, context).get_continuous_state_vector()
        error = state.GetAtIndex(0) - upright_theta
        # Wrap error to [-pi, pi].
        return (error + np.pi) % (2 * np.pi) - np.pi

    num_samples = args.num_samples
    results = MonteCarloSimulation(make_simulator=make_simulator,
                                   output=calc_wrapped_error,
                                   final_time=1.0,
                                   num_samples=num_samples,
                                   generator=RandomGenerator())

    # Compute results.
    # The "success" region is fairly large since some "stabilized" trials
    # may still be oscillating around the fixed point. Failed examples are
    # consistently much farther from the fixed point than this.
    binary_results = np.array([abs(res.output) < 0.1 for res in results])
    passing_ratio = float(sum(binary_results)) / len(results)
    # 95% confidence interval for the passing ratio.
    passing_ratio_var = 1.96 * np.sqrt(passing_ratio *
                                       (1. - passing_ratio) / len(results))

    print("Monte-Carlo estimated performance across %d samples: "
          "%.2f%% +/- %0.2f%%" %
          (num_samples, passing_ratio * 100, passing_ratio_var * 100))

    # Analytically compute the best possible ROA, for comparison, but
    # calculating where the torque needed to lift the pendulum exceeds
    # the torque limit.
    arm_radius = 0.5
    arm_mass = 1.0
    # torque = r x f = r * (m * 9.81 * sin(theta))
    # theta = asin(torque / (r * m))
    if torque_limit <= (arm_radius * arm_mass * 9.81):
        roa_half_width = np.arcsin(torque_limit /
                                   (arm_radius * arm_mass * 9.81))
    else:
        roa_half_width = np.pi

    roa_as_fraction_of_state_space = roa_half_width / np.pi
    print("Max possible ROA = %0.2f%% of state space, which should"
          " match with the above estimate." %
          (100 * roa_as_fraction_of_state_space))