def test_filtered_aggregator(self): filter_ = filters.Filter(dimension="dim", value="val") aggs = [ aggregators.count("metric1"), aggregators.longsum("metric2"), aggregators.doublesum("metric3"), aggregators.doublemin("metric4"), aggregators.doublemax("metric5"), aggregators.hyperunique("metric6"), aggregators.cardinality("dim1"), aggregators.cardinality(["dim1", "dim2"], by_row=True), aggregators.thetasketch("dim1"), aggregators.thetasketch("metric7"), aggregators.thetasketch("metric8", isinputthetasketch=True, size=8192), ] for agg in aggs: expected = { "type": "filtered", "filter": { "type": "selector", "dimension": "dim", "value": "val" }, "aggregator": agg, } actual = aggregators.filtered(filter_, agg) assert actual == expected
def test_filtered_aggregator(self): filter_ = filters.Filter(dimension='dim', value='val') aggs = [aggregators.count('metric1'), aggregators.longsum('metric2'), aggregators.doublesum('metric3'), aggregators.doublemin('metric4'), aggregators.doublemax('metric5'), aggregators.hyperunique('metric6'), aggregators.cardinality('dim1'), aggregators.cardinality(['dim1', 'dim2'], by_row=True), aggregators.thetasketch('dim1'), aggregators.thetasketch('metric7'), aggregators.thetasketch('metric8', isinputthetasketch=True, size=8192) ] for agg in aggs: expected = { 'type': 'filtered', 'filter': { 'type': 'selector', 'dimension': 'dim', 'value': 'val' }, 'aggregator': agg } actual = aggregators.filtered(filter_, agg) assert actual == expected
def test_build_aggregators(self): agg_input = { 'agg1': aggregators.count('metric1'), 'agg2': aggregators.longsum('metric2'), 'agg3': aggregators.doublesum('metric3'), 'agg4': aggregators.doublemin('metric4'), 'agg5': aggregators.doublemax('metric5'), 'agg6': aggregators.hyperunique('metric6'), 'agg7': aggregators.cardinality('dim1'), 'agg8': aggregators.cardinality(['dim1', 'dim2'], by_row=True), 'agg9': aggregators.thetasketch('dim1'), 'agg10': aggregators.thetasketch('metric7'), 'agg11': aggregators.thetasketch('metric8', isinputthetasketch = True, size=8192) } built_agg = aggregators.build_aggregators(agg_input) expected = [ {'name': 'agg1', 'type': 'count', 'fieldName': 'metric1'}, {'name': 'agg2', 'type': 'longSum', 'fieldName': 'metric2'}, {'name': 'agg3', 'type': 'doubleSum', 'fieldName': 'metric3'}, {'name': 'agg4', 'type': 'doubleMin', 'fieldName': 'metric4'}, {'name': 'agg5', 'type': 'doubleMax', 'fieldName': 'metric5'}, {'name': 'agg6', 'type': 'hyperUnique', 'fieldName': 'metric6'}, {'name': 'agg7', 'type': 'cardinality', 'fieldNames': ['dim1'], 'byRow': False}, {'name': 'agg8', 'type': 'cardinality', 'fieldNames': ['dim1', 'dim2'], 'byRow': True}, {'name': 'agg9', 'type': 'thetaSketch', 'fieldName': 'dim1', 'isInputThetaSketch': False, 'size': 16384}, {'name': 'agg10', 'type': 'thetaSketch', 'fieldName': 'metric7', 'isInputThetaSketch': False, 'size': 16384}, {'name': 'agg11', 'type': 'thetaSketch', 'fieldName': 'metric8', 'isInputThetaSketch': True, 'size': 8192} ] assert (sorted(built_agg, key=itemgetter('name')) == sorted(expected, key=itemgetter('name')))
def test_build_filtered_aggregator(self): filter_ = filters.Filter(dimension="dim", value="val") agg_input = { "agg1": aggregators.filtered(filter_, aggregators.count("metric1")), "agg2": aggregators.filtered(filter_, aggregators.longsum("metric2")), "agg3": aggregators.filtered(filter_, aggregators.doublesum("metric3")), "agg4": aggregators.filtered(filter_, aggregators.min("metric4")), "agg5": aggregators.filtered(filter_, aggregators.max("metric5")), "agg6": aggregators.filtered(filter_, aggregators.hyperunique("metric6")), "agg7": aggregators.filtered(filter_, aggregators.cardinality("dim1")), "agg8": aggregators.filtered(filter_, aggregators.cardinality(["dim1", "dim2"], by_row=True)), } base = {"type": "filtered", "filter": {"type": "selector", "dimension": "dim", "value": "val"}} aggs = [ {"name": "agg1", "type": "count", "fieldName": "metric1"}, {"name": "agg2", "type": "longSum", "fieldName": "metric2"}, {"name": "agg3", "type": "doubleSum", "fieldName": "metric3"}, {"name": "agg4", "type": "min", "fieldName": "metric4"}, {"name": "agg5", "type": "max", "fieldName": "metric5"}, {"name": "agg6", "type": "hyperUnique", "fieldName": "metric6"}, {"name": "agg7", "type": "cardinality", "fieldNames": ["dim1"], "byRow": False}, {"name": "agg8", "type": "cardinality", "fieldNames": ["dim1", "dim2"], "byRow": True}, ] expected = [] for agg in aggs: exp = deepcopy(base) exp.update({"aggregator": agg}) expected.append(exp) built_agg = aggregators.build_aggregators(agg_input) expected = sorted(built_agg, key=lambda k: itemgetter("name")(itemgetter("aggregator")(k))) actual = sorted(expected, key=lambda k: itemgetter("name")(itemgetter("aggregator")(k))) assert expected == actual
def test_build_aggregators(self): agg_input = { 'agg1': aggregators.count('metric1'), 'agg2': aggregators.longsum('metric2'), 'agg3': aggregators.doublesum('metric3'), 'agg4': aggregators.min('metric4'), 'agg5': aggregators.max('metric5'), 'agg6': aggregators.hyperunique('metric6'), 'agg7': aggregators.cardinality('dim1'), 'agg8': aggregators.cardinality(['dim1', 'dim2'], by_row=True) } built_agg = aggregators.build_aggregators(agg_input) expected = [ { 'name': 'agg1', 'type': 'count', 'fieldName': 'metric1' }, { 'name': 'agg2', 'type': 'longSum', 'fieldName': 'metric2' }, { 'name': 'agg3', 'type': 'doubleSum', 'fieldName': 'metric3' }, { 'name': 'agg4', 'type': 'min', 'fieldName': 'metric4' }, { 'name': 'agg5', 'type': 'max', 'fieldName': 'metric5' }, { 'name': 'agg6', 'type': 'hyperUnique', 'fieldName': 'metric6' }, { 'name': 'agg7', 'type': 'cardinality', 'fieldNames': ['dim1'], 'byRow': False }, { 'name': 'agg8', 'type': 'cardinality', 'fieldNames': ['dim1', 'dim2'], 'byRow': True }, ] assert (sorted(built_agg, key=itemgetter('name')) == sorted( expected, key=itemgetter('name')))
def test_build_filtered_aggregator(self): filter_ = filters.Filter(dimension='dim', value='val') agg_input = { 'agg1': aggregators.filtered(filter_, aggregators.count('metric1')), 'agg2': aggregators.filtered(filter_, aggregators.longsum('metric2')), 'agg3': aggregators.filtered(filter_, aggregators.doublesum('metric3')), 'agg4': aggregators.filtered(filter_, aggregators.min('metric4')), 'agg5': aggregators.filtered(filter_, aggregators.max('metric5')), 'agg6': aggregators.filtered(filter_, aggregators.hyperunique('metric6')), 'agg7': aggregators.filtered(filter_, aggregators.cardinality('dim1')), 'agg8': aggregators.filtered(filter_, aggregators.cardinality(['dim1', 'dim2'], by_row=True)), } base = { 'type': 'filtered', 'filter': { 'type': 'selector', 'dimension': 'dim', 'value': 'val' } } aggs = [ {'name': 'agg1', 'type': 'count', 'fieldName': 'metric1'}, {'name': 'agg2', 'type': 'longSum', 'fieldName': 'metric2'}, {'name': 'agg3', 'type': 'doubleSum', 'fieldName': 'metric3'}, {'name': 'agg4', 'type': 'min', 'fieldName': 'metric4'}, {'name': 'agg5', 'type': 'max', 'fieldName': 'metric5'}, {'name': 'agg6', 'type': 'hyperUnique', 'fieldName': 'metric6'}, {'name': 'agg7', 'type': 'cardinality', 'fieldNames': ['dim1'], 'byRow': False}, {'name': 'agg8', 'type': 'cardinality', 'fieldNames': ['dim1', 'dim2'], 'byRow': True}, ] expected = [] for agg in aggs: exp = deepcopy(base) exp.update({'aggregator': agg}) expected.append(exp) built_agg = aggregators.build_aggregators(agg_input) expected = sorted(built_agg, key=lambda k: itemgetter('name')( itemgetter('aggregator')(k))) actual = sorted(expected, key=lambda k: itemgetter('name')( itemgetter('aggregator')(k))) assert expected == actual
def get(self, request): query = create_druid_client() last_week_start_date = (datetime.now() - timedelta(days=7)).strftime("%Y-%m-%d") today_date = datetime.now().strftime("%Y-%m-%d") query_result = query.groupby( datasource='celtra3', granularity='week', dimensions=['adId'], intervals=["{0}/{1}".format(last_week_start_date, today_date)], aggregations={ 'user': hyperunique('user'), 'impressions': doublesum('impressions') }, ) return Response(query_result.result)
def test_filtered_aggregator(self): filter_ = filters.Filter(dimension="dim", value="val") aggs = [ aggregators.count("metric1"), aggregators.longsum("metric2"), aggregators.doublesum("metric3"), aggregators.min("metric4"), aggregators.max("metric5"), aggregators.hyperunique("metric6"), aggregators.cardinality("dim1"), aggregators.cardinality(["dim1", "dim2"], by_row=True), ] for agg in aggs: expected = { "type": "filtered", "filter": {"type": "selector", "dimension": "dim", "value": "val"}, "aggregator": agg, } actual = aggregators.filtered(filter_, agg) assert actual == expected
def test_build_aggregators(self): agg_input = { 'agg1': aggregators.count('metric1'), 'agg2': aggregators.longsum('metric2'), 'agg3': aggregators.doublesum('metric3'), 'agg4': aggregators.min('metric4'), 'agg5': aggregators.max('metric5'), 'agg6': aggregators.hyperunique('metric6') } built_agg = aggregators.build_aggregators(agg_input) expected = [ {'name': 'agg1', 'type': 'count', 'fieldName': 'metric1'}, {'name': 'agg2', 'type': 'longSum', 'fieldName': 'metric2'}, {'name': 'agg3', 'type': 'doubleSum', 'fieldName': 'metric3'}, {'name': 'agg4', 'type': 'min', 'fieldName': 'metric4'}, {'name': 'agg5', 'type': 'max', 'fieldName': 'metric5'}, {'name': 'agg6', 'type': 'hyperUnique', 'fieldName': 'metric6'}, ] assert (sorted(built_agg, key=itemgetter('name')) == sorted(expected, key=itemgetter('name')))
def test_filtered_aggregator(self): filter_ = filters.Filter(dimension='dim', value='val') aggs = [aggregators.count('metric1'), aggregators.longsum('metric2'), aggregators.doublesum('metric3'), aggregators.min('metric4'), aggregators.max('metric5'), aggregators.hyperunique('metric6')] for agg in aggs: expected = { 'type': 'filtered', 'filter': { 'type': 'selector', 'dimension': 'dim', 'value': 'val' }, 'aggregator': agg } actual = aggregators.filtered(filter_, agg) assert actual == expected
def test_build_aggregators(self): agg_input = { "agg1": aggregators.count("metric1"), "agg2": aggregators.longsum("metric2"), "agg3": aggregators.doublesum("metric3"), "agg4": aggregators.min("metric4"), "agg5": aggregators.max("metric5"), "agg6": aggregators.hyperunique("metric6"), "agg7": aggregators.cardinality("dim1"), "agg8": aggregators.cardinality(["dim1", "dim2"], by_row=True), } built_agg = aggregators.build_aggregators(agg_input) expected = [ {"name": "agg1", "type": "count", "fieldName": "metric1"}, {"name": "agg2", "type": "longSum", "fieldName": "metric2"}, {"name": "agg3", "type": "doubleSum", "fieldName": "metric3"}, {"name": "agg4", "type": "min", "fieldName": "metric4"}, {"name": "agg5", "type": "max", "fieldName": "metric5"}, {"name": "agg6", "type": "hyperUnique", "fieldName": "metric6"}, {"name": "agg7", "type": "cardinality", "fieldNames": ["dim1"], "byRow": False}, {"name": "agg8", "type": "cardinality", "fieldNames": ["dim1", "dim2"], "byRow": True}, ] assert sorted(built_agg, key=itemgetter("name")) == sorted(expected, key=itemgetter("name"))
def test_build_aggregators(self): agg_input = { 'agg1': aggregators.count('metric1'), 'agg2': aggregators.longsum('metric2'), 'agg3': aggregators.doublesum('metric3'), 'agg4': aggregators.min('metric4'), 'agg5': aggregators.max('metric5'), 'agg6': aggregators.hyperunique('metric6'), 'agg7': aggregators.cardinality('dim1'), 'agg8': aggregators.cardinality(['dim1', 'dim2'], by_row=True) } built_agg = aggregators.build_aggregators(agg_input) expected = [ {'name': 'agg1', 'type': 'count', 'fieldName': 'metric1'}, {'name': 'agg2', 'type': 'longSum', 'fieldName': 'metric2'}, {'name': 'agg3', 'type': 'doubleSum', 'fieldName': 'metric3'}, {'name': 'agg4', 'type': 'min', 'fieldName': 'metric4'}, {'name': 'agg5', 'type': 'max', 'fieldName': 'metric5'}, {'name': 'agg6', 'type': 'hyperUnique', 'fieldName': 'metric6'}, {'name': 'agg7', 'type': 'cardinality', 'fieldNames': ['dim1'], 'byRow': False}, {'name': 'agg8', 'type': 'cardinality', 'fieldNames': ['dim1', 'dim2'], 'byRow': True}, ] assert (sorted(built_agg, key=itemgetter('name')) == sorted(expected, key=itemgetter('name')))
def __init__(self, field, hyper_unique_field): aggregations = {field: hyperunique(hyper_unique_field)} super(HyperUniqueCountCalculation, self).__init__(aggregations=aggregations)
def test_build_aggregators(self): agg_input = { "agg1": aggregators.count("metric1"), "agg2": aggregators.longsum("metric2"), "agg3": aggregators.doublesum("metric3"), "agg4": aggregators.doublemin("metric4"), "agg5": aggregators.doublemax("metric5"), "agg6": aggregators.hyperunique("metric6"), "agg7": aggregators.cardinality("dim1"), "agg8": aggregators.cardinality(["dim1", "dim2"], by_row=True), "agg9": aggregators.thetasketch("dim1"), "agg10": aggregators.thetasketch("metric7"), "agg11": aggregators.thetasketch("metric8", isinputthetasketch=True, size=8192), } built_agg = aggregators.build_aggregators(agg_input) expected = [ { "name": "agg1", "type": "count", "fieldName": "metric1" }, { "name": "agg2", "type": "longSum", "fieldName": "metric2" }, { "name": "agg3", "type": "doubleSum", "fieldName": "metric3" }, { "name": "agg4", "type": "doubleMin", "fieldName": "metric4" }, { "name": "agg5", "type": "doubleMax", "fieldName": "metric5" }, { "name": "agg6", "type": "hyperUnique", "fieldName": "metric6" }, { "name": "agg7", "type": "cardinality", "fieldNames": ["dim1"], "byRow": False, }, { "name": "agg8", "type": "cardinality", "fieldNames": ["dim1", "dim2"], "byRow": True, }, { "name": "agg9", "type": "thetaSketch", "fieldName": "dim1", "isInputThetaSketch": False, "size": 16384, }, { "name": "agg10", "type": "thetaSketch", "fieldName": "metric7", "isInputThetaSketch": False, "size": 16384, }, { "name": "agg11", "type": "thetaSketch", "fieldName": "metric8", "isInputThetaSketch": True, "size": 8192, }, ] assert sorted(built_agg, key=itemgetter("name")) == sorted(expected, key=itemgetter("name"))
def test_build_filtered_aggregator(self): filter_ = filters.Filter(dimension="dim", value="val") agg_input = { "agg1": aggregators.filtered(filter_, aggregators.count("metric1")), "agg2": aggregators.filtered(filter_, aggregators.longsum("metric2")), "agg3": aggregators.filtered(filter_, aggregators.doublesum("metric3")), "agg4": aggregators.filtered(filter_, aggregators.doublemin("metric4")), "agg5": aggregators.filtered(filter_, aggregators.doublemax("metric5")), "agg6": aggregators.filtered(filter_, aggregators.hyperunique("metric6")), "agg7": aggregators.filtered(filter_, aggregators.cardinality("dim1")), "agg8": aggregators.filtered( filter_, aggregators.cardinality(["dim1", "dim2"], by_row=True)), "agg9": aggregators.filtered(filter_, aggregators.thetasketch("dim1")), "agg10": aggregators.filtered(filter_, aggregators.thetasketch("metric7")), "agg11": aggregators.filtered( filter_, aggregators.thetasketch("metric8", isinputthetasketch=True, size=8192), ), } base = { "type": "filtered", "filter": { "type": "selector", "dimension": "dim", "value": "val" }, } aggs = [ { "name": "agg1", "type": "count", "fieldName": "metric1" }, { "name": "agg2", "type": "longSum", "fieldName": "metric2" }, { "name": "agg3", "type": "doubleSum", "fieldName": "metric3" }, { "name": "agg4", "type": "doubleMin", "fieldName": "metric4" }, { "name": "agg5", "type": "doubleMax", "fieldName": "metric5" }, { "name": "agg6", "type": "hyperUnique", "fieldName": "metric6" }, { "name": "agg7", "type": "cardinality", "fieldNames": ["dim1"], "byRow": False, }, { "name": "agg8", "type": "cardinality", "fieldNames": ["dim1", "dim2"], "byRow": True, }, { "name": "agg9", "type": "thetaSketch", "fieldName": "dim1", "isInputThetaSketch": False, "size": 16384, }, { "name": "agg10", "type": "thetaSketch", "fieldName": "metric7", "isInputThetaSketch": False, "size": 16384, }, { "name": "agg11", "type": "thetaSketch", "fieldName": "metric8", "isInputThetaSketch": True, "size": 8192, }, ] expected = [] for agg in aggs: exp = deepcopy(base) exp.update({"aggregator": agg}) expected.append(exp) built_agg = aggregators.build_aggregators(agg_input) expected = sorted(built_agg, key=lambda k: itemgetter("name") (itemgetter("aggregator")(k))) actual = sorted(expected, key=lambda k: itemgetter("name") (itemgetter("aggregator")(k))) assert expected == actual
def test_build_filtered_aggregator(self): filter_ = filters.Filter(dimension='dim', value='val') agg_input = { 'agg1': aggregators.filtered(filter_, aggregators.count('metric1')), 'agg2': aggregators.filtered(filter_, aggregators.longsum('metric2')), 'agg3': aggregators.filtered(filter_, aggregators.doublesum('metric3')), 'agg4': aggregators.filtered(filter_, aggregators.doublemin('metric4')), 'agg5': aggregators.filtered(filter_, aggregators.doublemax('metric5')), 'agg6': aggregators.filtered(filter_, aggregators.hyperunique('metric6')), 'agg7': aggregators.filtered(filter_, aggregators.cardinality('dim1')), 'agg8': aggregators.filtered(filter_, aggregators.cardinality(['dim1', 'dim2'], by_row=True)), 'agg9': aggregators.filtered(filter_, aggregators.thetasketch('dim1')), 'agg10': aggregators.filtered(filter_, aggregators.thetasketch('metric7')), 'agg11': aggregators.filtered(filter_, aggregators.thetasketch('metric8', isinputthetasketch = True, size=8192)), } base = { 'type': 'filtered', 'filter': { 'type': 'selector', 'dimension': 'dim', 'value': 'val' } } aggs = [ {'name': 'agg1', 'type': 'count', 'fieldName': 'metric1'}, {'name': 'agg2', 'type': 'longSum', 'fieldName': 'metric2'}, {'name': 'agg3', 'type': 'doubleSum', 'fieldName': 'metric3'}, {'name': 'agg4', 'type': 'doubleMin', 'fieldName': 'metric4'}, {'name': 'agg5', 'type': 'doubleMax', 'fieldName': 'metric5'}, {'name': 'agg6', 'type': 'hyperUnique', 'fieldName': 'metric6'}, {'name': 'agg7', 'type': 'cardinality', 'fieldNames': ['dim1'], 'byRow': False}, {'name': 'agg8', 'type': 'cardinality', 'fieldNames': ['dim1', 'dim2'], 'byRow': True}, {'name': 'agg9', 'type': 'thetaSketch', 'fieldName': 'dim1', 'isInputThetaSketch': False, 'size': 16384}, {'name': 'agg10', 'type': 'thetaSketch', 'fieldName': 'metric7', 'isInputThetaSketch': False, 'size': 16384}, {'name': 'agg11', 'type': 'thetaSketch', 'fieldName': 'metric8', 'isInputThetaSketch': True, 'size': 8192} ] expected = [] for agg in aggs: exp = deepcopy(base) exp.update({'aggregator': agg}) expected.append(exp) built_agg = aggregators.build_aggregators(agg_input) expected = sorted(built_agg, key=lambda k: itemgetter('name')( itemgetter('aggregator')(k))) actual = sorted(expected, key=lambda k: itemgetter('name')( itemgetter('aggregator')(k))) assert expected == actual