コード例 #1
0
ファイル: flask_plotfunc.py プロジェクト: AlinaLei/learngit
def plot_geo_station_num(re_dic, to_path):
    dw = my_(config.MYSQL_BI_RW_ENV)
    muchcols_table = 'data_center.dc_stations_muchcols_enc'
    sqls = "select city scale,avg(latitude) avg_lat,avg(longitude) avg_lng,count(*) numbers from %s where name like '%%%s%%' group by city order by numbers desc" % (
    muchcols_table, re_dic['name'])
    count_station_ = dw.to_dataframe(sqls)
    # count_station_['scale'] = count_station_['scale'].apply(lambda x: change_city(x, pro))
    coords = {}
    for i in range(len(count_station_)):
        coords[count_station_.loc[i, 'scale']] = [count_station_.loc[i, 'avg_lng'], count_station_.loc[i, 'avg_lat']]

    num_Max = count_station_['numbers'].max()
    name_str = "油站名包含'%s':" % re_dic['name'] if re_dic['name'] else ''
    page = pyecharts.Page()
    style = pyecharts.Style(width=1300, height=860, background_color='#404a66', title_color="#eee", title_pos="center")
    geo = pyecharts.Geo(name_str + "油站分布地图", **style.init_style)
    geo.add("", count_station_['scale'], count_station_['numbers'], visual_text_color="#eee", is_legend_show=False,
            symbol_size=12, is_visualmap=True, visual_range=[0, num_Max],
            tooltip_formatter='{b}',
            label_emphasis_textsize=15,
            label_emphasis_pos='right', geo_cities_coords=coords)
    page.add(geo)
    chart2 = pyecharts.Bar(name_str + "油站分布柱状图", **style.init_style)
    chart2.add("", count_station_['scale'][:25], count_station_['numbers'][:25], visual_range=[0, num_Max],
               is_label_show=True,
               is_visualmap=True, visual_text_color='#eee')
    page.add(chart2)
    page.render(to_path)
コード例 #2
0
ファイル: flask_plotfunc.py プロジェクト: AlinaLei/learngit
def plot_oil_station_num_(re_dic, to_path):
    standard_province = ['安徽', '贵州', '澳门', '北京', '重庆', '福建', '福建', '甘肃', '广东', '广西', '广州', '海南', '河北', '黑龙江', '河南', '湖北', '湖南', '江苏',
           '江西', '吉林', '辽宁', '内蒙古', '宁夏', '青海', '山东', '上海', '陕西', '山西', '四川', '台湾', '天津', '香港', '新疆', '西藏', '云南', '浙江']
    dw = my_(config.MYSQL_BI_RW_ENV)
    muchcols_table = 'data_center.dc_stations_muchcols_enc'
    if re_dic['scale'] == 'china':
        sqls = "select province scale,count(*) numbers from %s where name like '%%%s%%' group by province order by numbers desc" % (muchcols_table, re_dic['name'])
        count_station_ = dw.to_dataframe(sqls)
        count_station_['scale'] = count_station_['scale'].apply(lambda x: change_city(x, standard_province))
    else:
        re_dic['scale'] = re_dic['scale'].split('省')[0]
        re_dic['scale'] = re_dic['scale'].split('市')[0]
        sqls = "select city scale,count(*) numbers from %s where province like '%%%s%%' and name like '%%%s%%' group by city order by numbers desc" % (muchcols_table, re_dic['scale'], re_dic['name'])
        count_station_ = dw.to_dataframe(sqls)

    num_Max = count_station_['numbers'].max()
    name_str = "油站名包含'%s':" %re_dic['name'] if re_dic['name'] else ''
    page = pyecharts.Page()
    style = pyecharts.Style(width=1300, height=860, background_color='#606a79', title_color="#eee", title_pos="center")
    map1 = pyecharts.Map(name_str+"油站分布地图", **style.init_style)
    map1.add("", count_station_['scale'], count_station_['numbers'], maptype=re_dic['scale'], visual_range=[0, num_Max], is_label_show=True,
               is_visualmap=True, visual_text_color='#eee')
    page.add(map1)
    chart2 = pyecharts.Bar(name_str+"油站分布柱状图", **style.init_style)
    chart2.add("", count_station_['scale'][:25], count_station_['numbers'][:25], maptype=re_dic['scale'], visual_range=[0, num_Max], is_label_show=True,
               is_visualmap=True, visual_text_color='#eee')
    page.add(chart2)
    page.render(to_path)
コード例 #3
0
ファイル: test_pyecharts.py プロジェクト: sxl47/learn
def func():

    page = pyecharts.Page()  # step 1

    # bar
    attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
    v1 = [5, 20, 36, 10, 75, 90]
    v2 = [10, 25, 8, 60, 20, 80]
    bar = pyecharts.Bar("柱状图数据堆叠示例")
    bar.add("商家A", attr, v1, is_stack=True)
    bar.add("商家B", attr, v2, is_stack=True)
    page.add(bar)  # step 2

    # scatter3D
    import random
    data = [[
        random.randint(0, 100),
        random.randint(0, 100),
        random.randint(0, 100)
    ] for _ in range(80)]
    range_color = [
        '#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf',
        '#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026'
    ]
    scatter3D = pyecharts.Scatter3D("3D 散点图示例", width=1200, height=600)
    scatter3D.add("", data, is_visualmap=True, visual_range_color=range_color)
    page.add(scatter3D)  # step 2

    page.render()  # step 3

    # scatter_geo
    attr = ['11', '22']
    data = ['1', '2']
    scatter_geo = pyecharts.Geo("地理位置视图", width=1200, height=600)
    scatter_geo.add("", attr, data)
    page.add(scatter_geo)  # step 2

    page.render()  # step 3

    data = [["广州", "北京"], ["广州", "上海"]]
    scatter_geo = pyecharts.GeoLines("地理位置视图", width=1200, height=600)
    scatter_geo.add("上午航班",
                    data,
                    geo_normal_color='#ff00ff',
                    geo_effect_period=9,
                    geo_effect_color='#ff0000',
                    geo_effect_symbol='arrow')
    data = [["广州", "南昌"], ["广州", "成都"]]
    scatter_geo.add("下午航班",
                    data,
                    geo_effect_traillength=1,
                    geo_emphasis_color='#0000ff')
    page.add(scatter_geo)  # step 2

    page.render()  # step 3
コード例 #4
0
ファイル: qly_api.py プロジェクト: zsp00/py_echarts
def read_1688_all(cid, cat_name):
    page = pyecharts.Page()  # 实例化page类

    bar = read_1688_index(cid, cat_name)
    page.add(bar)
    attr_list = mongo_client2.get_1688attr(cid)
    # attrs = []
    # for attr in attr_list:
    #     attrs.append(attr)
    rows_by_type = defaultdict(list)

    for attr in attr_list:
        rows_by_type[attr['attr_type']].append(attr)
    for attr_type in rows_by_type.items():
        # print(attr_type[1]['attr_value'])
        attr_value_index_group = []
        attr_value_group = []
        for attr in attr_type[1]:
            attr_value_index_group.append(attr['attr_value_index'])
            attr_value_group.append(attr['attr_value'])
            # print(attr_type[0]+"\t"+attr['attr_value'])
        # attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
        # v1 = [11, 12, 13, 10, 10, 10]
        pie = pyecharts.Pie(attr_type[0], title_pos='50%')
        pie.add(attr_type[0],
                attr_value_group,
                attr_value_index_group,
                radius=[40, 75],
                label_text_color=None,
                is_label_show=True,
                legend_orient='vertical',
                legend_pos='left')
        page.add(pie)
    # print(rows_by_type)
    # pie
    # attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
    # v1 = [11, 12, 13, 10, 10, 10]
    # pie = Pie("饼图-圆环图示例", title_pos='50%')
    # pie.add("", attr, v1, radius=[40, 75], label_text_color=None,
    #         is_label_show=True, legend_orient='vertical', legend_pos='left')

    # TODO 配置Grid类
    # grid = Grid(height=720, width=1200)  # 初始化,参数可传page_title,width,height
    # grid.add(bar, grid_bottom="60%", grid_left="60%")  # 添加要展示的图表,并设置显示位置
    # # grid.add(line, grid_bottom="60%", grid_right="60%")  # 添加要展示的图表,并设置显示位置
    # grid.add(pie, grid_bottom="60%", grid_right="60%")
    # grid.add(scatter, grid_top="60%", grid_left="60%")  # 添加要展示的图表,并设置显示位置
    # grid.add(es, grid_top="60%", grid_right="60%")  # 添加要展示的图表,并设置显示位置

    # grid.render("Grid_并行显示多张图表.html")
    # return grid

    return page
コード例 #5
0
ファイル: flask_plotfunc.py プロジェクト: AlinaLei/learngit
def plot_station_lostavg(re_dic, to_path):
    re_dic = add_whereadd_redic(re_dic)
    dic_station, dic_smarttime = get_station_detail_(re_dic)
    re_dic['stname'] = '%s-%s' % (dic_station['city'], dic_station['stname'])

    dw = my_(config.MYSQL_BI_RW_ENV)
    sql_mer = """SELECT 
      sum(if(spr_id<3,value_c,0)) users_7,sum(if(spr_id<4,value_c,0)) users_15,sum(value_c*value_e) lostday_a,sum(value_c) users_a,batch_date 
    FROM profile.pr_stations_user_dis_ where mer_id = %(mer_id)s and tar_id = 30 %(whereadd)s group by batch_date""" % re_dic
    sql_all = """SELECT 
      sum(if(spr_id<3,value_c,0)) users_7,sum(if(spr_id<4,value_c,0)) users_15,sum(value_c*value_e) lostday_a,sum(value_c) users_a,batch_date  
    FROM profile.pr_platforms_user_dis_ where mer_id = 0 and tar_id = 30 %(whereadd)s group by batch_date""" % re_dic
    data_mer = dw.to_dataframe(sql_mer)
    data_all = dw.to_dataframe(sql_all)
    page = pyecharts.Page(page_title='流失分析',)
    X = data_all['batch_date']
    tem_dic = dict(label_text_size=12, is_label_show=False,
                   is_fill=True, area_opacity=0.08, line_width=2, is_smooth=True, mark_line=["average"]
                   , xaxis_interval=1, xaxis_rotate=45)
    line1 = pyecharts.Line("平均流失天数趋势:", "%(stname)s(%(mer_id)s)" % re_dic, width=1500, height=600)
    lostavg_mer = (data_mer['lostday_a'] / data_mer['users_a']).round(2)
    lostavg_all = (data_all['lostday_a'] / data_all['users_a']).round(2)
    line1.add("油站", X, lostavg_mer, **tem_dic)
    line1.add("全平台", X, lostavg_all, **tem_dic)
    page.add(line1)

    rrate_mer = (data_mer['users_15'] / data_mer['users_a']).round(4)
    rrate_all = (data_all['users_15'] / data_all['users_a']).round(4)
    line2 = pyecharts.Line("流失15日内的用户占比:", "%(stname)s(%(mer_id)s)" % re_dic, width=1500, height=600)
    conb_ = np.append(rrate_mer, rrate_all)
    tem_dic.update({'yaxis_min': conb_.min() * 0.6})
    lineadd_sted(line2, dic_smarttime, X, conb_.max() * 1.2)
    line2.add("油站", X, rrate_mer, **tem_dic)
    line2.add("全平台", X, rrate_all, **tem_dic)
    page.add(line2)

    rrate_mer = (data_mer['users_7'] / data_mer['users_a']).round(4)
    rrate_all = (data_all['users_7'] / data_all['users_a']).round(4)
    line2 = pyecharts.Line("流失7日内的用户占比:", "%(stname)s(%(mer_id)s)" % re_dic, width=1500, height=600)
    conb_ = np.append(rrate_mer, rrate_all)
    tem_dic.update({'yaxis_min': conb_.min() * 0.6})
    lineadd_sted(line2, dic_smarttime, X, conb_.max() * 1.2)
    line2.add("油站", X, rrate_mer, **tem_dic)
    line2.add("全平台", X, rrate_all, **tem_dic)
    page.add(line2)

    page.render(to_path)
コード例 #6
0
def create_bar():
    user_list = JobsInfo.objects.all().values_list("job_title", "job_salary", "job_exp")
    page = pe.Page()

    name = ["服装"]
    name2 = ["电器"]
    x = list(user_list[0])
    y = ["50", 200, 100]
    y2 = ["50", 300, 1400]
    # bar
    bar = pe.Bar("我的第一个图表", "这里是副标题", width=600, height=300)
    bar.add(name, x, y)
    bar.add(name2, x, y2)
    page.add(bar)
    # line
    line = pe.Line('Demo Line', "这里是副标题", width=600, height=300)
    line.add(name, x, y)
    line.add(name2, x, y2)
    page.add(line)
    return page
コード例 #7
0
ファイル: flask_plotfunc.py プロジェクト: AlinaLei/learngit
def plot_geo_station(re_dic, to_path):
    dw = my_(config.MYSQL_BI_RW_ENV)
    muchcols_table = 'data_center.dc_stations_muchcols_enc'
    sqls = "select name scale,latitude lat,longitude lng from %s where name like '%%%s%%'" % (muchcols_table, re_dic['name'])
    count_station_ = dw.to_dataframe(sqls)
    count_station_['numbers']=1
    coords={}
    for i in range(len(count_station_)):
        coords[count_station_.loc[i,'scale']]=[count_station_.loc[i,'lng'],count_station_.loc[i,'lat']]
    # num_Max = count_station_['numbers'].max()
    name_str = "油站名包含'%s':" %re_dic['name'] if re_dic['name'] else ''
    page = pyecharts.Page()
    style = pyecharts.Style(width=1300, height=860, background_color='#404a49', title_color="#eee", title_pos="center")
    geo = pyecharts.Geo(name_str+"油站分布地图",**style.init_style)
    geo.add("",count_station_['scale'], count_station_['numbers'], visual_text_color="#eee", is_legend_show=False,
              symbol_size=11, is_visualmap=True,
              tooltip_formatter='{b}',
              label_emphasis_textsize=15,
              label_emphasis_pos='right',geo_cities_coords=coords)
    page.add(geo)
    page.render(to_path)
コード例 #8
0
ファイル: Top10shareholder.py プロジェクト: piaoxue85/wakuang
def Top10Holder(codenumber, startdate='2014-10-10'):
    """
    Top10 holde 是将top10 股东用Pie 图进行可视化,其中包含一年股东变化的河流图.
    

    Parameters
    ----------
    codenumber: stock 代码
    startdate='2014-10-10': 起始时间 

    Returns
    -------
    输出为 当前文件夹下 html :top10.html

    """

    if len(codenumber) != 6:  #检查 code 长度 不符合6位全部错误
        return False
    elif len(codenumber) == 6:
        datestr = startdate.split("-")
        thisyear = datestr[0]

        df2 = ts.top10_holders(code=codenumber, gdtype="1")  # 下载数据

        test = df2[1]["quarter"].tolist()  #获取季度列表

        df_ready = df2[1]
        idxlist = []
        for idx, val in enumerate(test):
            a = val.split("-")
            if a[0] == thisyear:
                # print a[0],idx
                idxlist.append(idx)
            elif a[0] > thisyear:
                idxlist.append(idx)
        thing = df_ready.loc[idxlist]
        thing = pd.DataFrame(thing)

        thing = thing.sort_values(["quarter", "name"])  #排序所有流通股股东

        quarterlist = thing.quarter.value_counts()
        quarterlist = quarterlist.index.sort_values()
        timeline = Timeline(
            height=600,
            width=800,
            timeline_left=20,
            timeline_right=100,
            is_auto_play=False,
            timeline_bottom=0,
            timeline_symbol='diamond',
        )
        year_index = thing.quarter.apply(
            lambda x: x[0:4])  # year list ('20xx')
        yearlist = year_index.value_counts()
        yearlist = yearlist.index.sort_values()

        #print(quarterlist,year)
        for quarters in list(quarterlist):  # 将每个季度画成PIE 加入TIMELINE
            df = thing[thing["quarter"] == quarters]
            df.h_pro = df.h_pro.apply(lambda x: float(x))
            df.hold = df.hold.apply(lambda x: float(x))
            sum_pro = round(df.h_pro.sum(), 2)
            sum_hold = round(np.mean(df.hold / df.h_pro) * sum_pro, 0)

            s = pd.Series({
                'name': '其他',
                'h_pro': 100 - sum_pro,
                'hold': sum_hold
            })
            df = df.append(s, ignore_index=True)
            #df=df.sort_values(["name"])

            pie = Pie('%s' % quarters + "-" + "top10holder",
                      title_pos='outside')
            TopPie = pie.add(
                '',
                df.name,
                df.hold,
                radius=[20, 45],
                center=[45, 50],
                is_legend_show=True,
                is_label_show=True,
                # is_visualmap=True,
                is_more_utils=True,
                is_toolbox_show=True,
                legend_pos='left',
                legend_orient='vertical',
                legend_top=25,
                legend_text_size=12,
                label_text_size=10,
                label_text_color="#100",
                tooltip_text_color="#F0F",
                #is_label_emphasis=False,#是否显示高亮
                label_formatter="{b}:\n {c}万股\n{d}%")

            #gird= Grid()
            #gird.add(pie,grid_bottom="20%")
            #gird.add(tab,grid_bottom="60%")
            #pietimeline.add(pie, quarters,)
            timeline.add(
                pie,
                quarters,
            )
            #page = pyecharts.Page()
            #page.add(pie)
            #page.add(_treemap)
            #timeline.add(pie,quarters,)
            #timeline.add(_treemap,quarters,)

            #pietimeline.top('40%')
        trmtimeline = Timeline(
            height=1200,
            width=800,
            timeline_left=20,
            timeline_right=100,
            is_auto_play=False,
            timeline_bottom=0,
            timeline_symbol='diamond',
        )
        #for y in list(yearlist):

        datas_index = []
        for i, _year in enumerate(year_index):  #获取datas_index
            if _year in list(yearlist)[-1:]:
                datas_index.append(i)
            else:
                pass

        print(thing.loc[datas_index, :])
        collect_datas = thing.iloc[datas_index, :3]
        collect_datas.hold = collect_datas.hold.apply(lambda x: float(x))
        print(collect_datas)
        name = collect_datas['name']
        collect_datas.drop(labels=['name'], axis=1, inplace=True)
        collect_datas.insert(2, 'name', name)
        print(collect_datas.get_values())
        tr = pyecharts.ThemeRiver(
            "TOP 10 hold 河流图 ",
            height=800,
            width=800,
        )
        tr.add(name.get_values(),
               collect_datas.get_values(),
               is_label_show=False)
        #trmtimeline.add(tr,"%s"%y,)
        page = pyecharts.Page()

        # page.add(trmtimeline)
        page.add(timeline)
        page.add(tr)
        '''
        them_dates=[]
        for i in thing.index:
            print (i)
            collect_datas=thing[thing.index==i].iloc[:, 0:3]
            name=collect_datas['name']
            collect_datas.drop(labels=['name'], axis=1,inplace = True)
            collect_datas.insert(2, 'name', name)
            print (collect_datas.get_values())
        '''

        print('time line done')

        return page
コード例 #9
0
ファイル: monitor.py プロジェクト: qingdaodahui/utils
def plot_monitor(dic_psi,
                 dic_ks,
                 dic_stats,
                 cols=None,
                 path='reportsource/model_monitor.html'):
    if not os.path.exists(os.path.dirname(os.path.abspath(path))):
        os.makedirs(os.path.dirname(os.path.abspath(path)))

    page = pyecharts.Page()

    for k in dic_psi.keys():
        temp = pd.read_json(json.dumps(dic_psi[k],
                                       cls=MyEncoder)).sort_values('date')
        temp = temp[temp.volume > 100]
        line = pyecharts.Line(k + ' PSI监控')
        line.add('psi',
                 temp.date,
                 temp['psi'],
                 xaxis_rotate=45,
                 is_datazoom_show=True,
                 tooltip_tragger='axis',
                 datazoom_type='both',
                 legend_pos='center',
                 legend_orient='horizontal')

        line_pass = pyecharts.Line()
        line_pass.add('pass_ratio',
                      temp.date,
                      temp['pass_ratio'],
                      xaxis_rotate=45,
                      is_datazoom_show=True,
                      tooltip_tragger='axis',
                      datazoom_type='both',
                      legend_pos='center',
                      legend_orient='horizontal')

        bar = pyecharts.Bar()
        bar.add('volume',
                temp.date,
                temp['volume'],
                xaxis_rotate=45,
                is_datazoom_show=True,
                tooltip_tragger='axis',
                datazoom_type='both',
                legend_pos='center',
                legend_orient='horizontal')

        overlap = pyecharts.Overlap()
        overlap.add(line)
        overlap.add(line_pass)
        overlap.add(bar, yaxis_index=1, is_add_yaxis=True)

        page.add(overlap)

    for k in dic_ks.keys():
        line = pyecharts.Line('%s features ks monitor' % k)
        for f in dic_ks[k].keys():
            temp = pd.read_json(json.dumps(dic_ks[k][f], cls=MyEncoder))
            temp = temp[temp['volume'] > 100]
            line.add(f,
                     temp.date,
                     temp.ks,
                     xaxis_rotate=90,
                     is_datazoom_show=True,
                     tooltip_tragger='axis',
                     datazoom_type='both',
                     legend_pos='right',
                     legend_orient='vertical')

        page.add(line)

    for k in dic_stats.keys():
        if cols is None:
            cols_f = dic_stats[k].keys()
        else:
            cols_f = [f for f in cols if f in dic_stats[k].keys()]
        for f in cols_f:
            line = pyecharts.Line('%s features stats monitor: ' % k + f)

            temp = pd.DataFrame(dic_stats[k][f]).sort_values('date')
            stats_name = temp.iloc[0]['tr_v'].keys()
            for n in stats_name:
                temp_te_v = temp.te_v.apply(pd.Series)
                temp_tr_v = temp.tr_v.apply(pd.Series)

                line.add(n,
                         temp.date,
                         temp_te_v[n],
                         is_datazoom_show=True,
                         tooltip_tragger='axis',
                         datazoom_type='both',
                         legend_pos='right',
                         legend_orient='vertical')
                line.add(n + '_benchmark',
                         temp.date,
                         temp_tr_v[n],
                         is_datazoom_show=True,
                         tooltip_tragger='axis',
                         datazoom_type='both',
                         legend_pos='right',
                         legend_orient='vertical')

            page.add(line)
    page.render(path)
    return None
コード例 #10
0
ファイル: 3_multiaxes.py プロジェクト: mr-why93/dash_tutorial
        overlap = echarts.Overlap(width=1200, height=600)
        # 默认不新增 x y 轴,并且 x y 轴的索引都为 0
        overlap.add(bar)
        # 新增一个 y 轴,此时 y 轴的数量为 2,第二个 y 轴的索引为 1(索引从 0 开始),所以设置 yaxis_index = 1
        # 由于使用的是同一个 x 轴,所以 x 轴部分不用做出改变
        overlap.add(line, yaxis_index=1, is_add_yaxis=True)
        overlap.render(path='tmp/overlap.html')


# Page:同一网页按顺序展示多图
if __name__ == '__main__':
    import pyecharts as echarts

    # 示例
    if __name__ == '__main__':
        page = echarts.Page()  # step 1

        # bar
        attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
        v1 = [5, 20, 36, 10, 75, 90]
        v2 = [10, 25, 8, 60, 20, 80]
        bar = echarts.Bar("柱状图数据堆叠示例")
        bar.add("商家A", attr, v1, is_stack=True)
        bar.add("商家B", attr, v2, is_stack=True)
        page.add(bar)  # step 2

        # scatter3D
        import random

        data = [
            [random.randint(0, 100),
コード例 #11
0
ファイル: flask_plotfunc.py プロジェクト: AlinaLei/learngit
def plot_station_3ntends(re_dic, to_path):
    
    re_dic = add_whereadd_redic(re_dic)
    dic_station, dic_smarttime = get_station_detail_(re_dic)
    re_dic['stname'] = '%s-%s' % (dic_station['city'], dic_station['stname'])

    mapp = {'30':'250', '14':'251', '7':'252', 'dyn':'253'}
    re_dic['tar_id'] = mapp[re_dic['N']]
    dw = my_(config.MYSQL_BI_RW_ENV)
    sql_mer = "SELECT * FROM profile.pr_stations_user_dis2_ where mer_id = %(mer_id)s and tar_id = %(tar_id)s %(whereadd)s" % re_dic
    sql_all = "SELECT * FROM profile.pr_platforms_user_dis2_ where mer_id = 0 and tar_id = %(tar_id)s %(whereadd)s" % re_dic
    data_mer = dw.to_dataframe(sql_mer)
    data_all = dw.to_dataframe(sql_all)
    page = pyecharts.Page(page_title='3N分析',)
    tem_dic = dict(label_text_size=12, is_label_show=False,
                   is_fill=True, area_opacity=0.12, line_width=2, is_smooth=True, mark_line=["average"]
                   ,xaxis_interval=1, xaxis_rotate=45)

    line1 = pyecharts.Line("当日加油的隔(N-2N)天回流占比:", "%(stname)s(%(mer_id)s)-(N=%(N)s)" % re_dic, width=1500, height=600)
    X = data_all.query('spr_id==11')['batch_date'].tolist()
    N1today_mer_rate = np.array(data_mer.query('spr_id==9')['value_c']) / np.array(data_mer.query('spr_id==8')['value_c'])
    N1today_all_rate = np.array(data_all.query('spr_id==9')['value_c']) / np.array(data_all.query('spr_id==8')['value_c'])
    Y_mer = N1today_mer_rate.round(4)
    Y_all = N1today_all_rate.round(4)
    conb_ = np.append(Y_mer,Y_all)
    tem_dic.update({'yaxis_min':conb_.min()*0.6})
    lineadd_sted(line1, dic_smarttime, X, conb_.max() * 1.2)
    line1.add("油站", X, Y_mer, **tem_dic)
    line1.add("全平台", X, Y_all, **tem_dic)

    page.add(line1)

    line2 = pyecharts.Line("当日加油的隔(2N-3N)天回流占比:", "%(stname)s(%(mer_id)s)-(N=%(N)s)" % re_dic, width=1500, height=600)
    X = data_all.query('spr_id==11')['batch_date']
    N2today_mer_rate = np.array(data_mer.query('spr_id==10')['value_c']) / np.array(data_mer.query('spr_id==8')['value_c'])
    N2today_all_rate = np.array(data_all.query('spr_id==10')['value_c']) / np.array(data_all.query('spr_id==8')['value_c'])
    Y_mer = N2today_mer_rate.round(4)
    Y_all = N2today_all_rate.round(4)
    conb_ = np.append(Y_mer, Y_all)
    tem_dic.update({'yaxis_min': conb_.min()*0.6})
    lineadd_sted(line2, dic_smarttime, X, conb_.max() * 1.2)
    line2.add("油站:", X, Y_mer, **tem_dic)
    line2.add("全平台", X, Y_all, **tem_dic)
    page.add(line2)

    line2 = pyecharts.Line("最近周期加油用户中睡眠回流占比:", "%(stname)s(%(mer_id)s)-(N=%(N)s)" % re_dic, width=1500, height=600)
    N3_mer_rate = np.array(data_mer.query('spr_id==4')['value_c']) / np.array(data_mer.query('spr_id==2')['value_c'])
    N3_all_rate = np.array(data_all.query('spr_id==4')['value_c']) / np.array(data_all.query('spr_id==2')['value_c'])
    Y_mer = N3_mer_rate.round(4)
    Y_all = N3_all_rate.round(4)
    conb_ = np.append(Y_mer, Y_all)
    tem_dic.update({'yaxis_min': conb_.min() * 0.6})
    lineadd_sted(line2, dic_smarttime, X, conb_.max() * 1.2)
    tem_dic.update({'yaxis_min': conb_.min()*0.6})
    line2.add("油站", X, Y_mer, **tem_dic)
    line2.add("全平台", X, Y_all, **tem_dic)
    page.add(line2)

    line2 = pyecharts.Line("睡眠回流占比:", "%(stname)s(%(mer_id)s)-(N=%(N)s)" % re_dic, width=1500, height=600)
    N3_mer_rate = np.array(data_mer.query('spr_id==4')['value_c']) / np.array(data_mer.query('spr_id==3')['value_c'])
    N3_all_rate = np.array(data_all.query('spr_id==4')['value_c']) / np.array(data_all.query('spr_id==3')['value_c'])
    Y_mer = N3_mer_rate.round(4)
    Y_all = N3_all_rate.round(4)
    conb_ = np.append(Y_mer, Y_all)
    tem_dic.update({'yaxis_min': conb_.min() * 0.6})
    lineadd_sted(line2, dic_smarttime, X, conb_.max() * 1.2)
    tem_dic.update({'yaxis_min': conb_.min() - 0.04})
    line2.add("油站", X, Y_mer, **tem_dic)
    line2.add("全平台", X, Y_all, **tem_dic)
    page.add(line2)

    line2 = pyecharts.Line("有睡眠趋势的用户占比:", "%(stname)s(%(mer_id)s)-(N=%(N)s)" % re_dic, width=1500, height=600)
    N3_mer_rate = np.array(data_mer.query('spr_id==5')['value_c']) / np.array(data_mer.query('spr_id==1')['value_c'])
    N3_all_rate = np.array(data_all.query('spr_id==5')['value_c']) / np.array(data_all.query('spr_id==1')['value_c'])
    Y_mer = N3_mer_rate.round(4)
    Y_all = N3_all_rate.round(4)
    conb_ = np.append(Y_mer, Y_all)
    tem_dic.update({'yaxis_min': conb_.min() * 0.6})
    lineadd_sted(line2, dic_smarttime, X, conb_.max() * 1.2)
    tem_dic.update({'yaxis_min': conb_.min() - 0.04})
    line2.add("油站", X, Y_mer, **tem_dic)
    line2.add("全平台", X, Y_all, **tem_dic)
    page.add(line2)

    page.render(to_path)
コード例 #12
0
def parser_job(i):
    # 工作的链接
    job_url = re.search('href="(.*?)"', i).group(1)
    name = re.search("<h3>(.*?)</h3>", i).group(1)
    add = re.search("<em>(.*?)</em>", i).group(1)
    money = re.search('"money">(.*?)</span>', i).group(1)
    jy, xl = re.search('-->([\s\S]*?)\n', i).group(1).split(" / ")

    return {"name":name,"add":add,"job_url":job_url,"money":money,"jy":jy,"xl":xl}

# 指定需要查看的技术方向
jobs = ["Java","Python"]

# 创建一个页面
page = pyecharts.Page()
for url in urls:
    if url[1] not in jobs:
        continue

    # 存储解析完成的字典
    datas = []

    for j in range(1,6):
        res = requests.get(url[0] + str(j))
        data = re.findall("""<a class="position_link"([\s\S]*?)<div class="company">""",res.text)
        for i in data:
            dic = parser_job(i)
            if "{" in dic["xl"]:
                continue
            datas.append(dic)