def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([784]) layer = in_ layer = eddl.Reshape(layer, [1, 28, 28]) layer = eddl.RandomCropScale(layer, [0.9, 1.0]) layer = eddl.Reshape(layer, [-1]) layer = eddl.ReLu( eddl.GaussianNoise( eddl.BatchNormalization(eddl.Dense(layer, 1024), True), 0.3)) layer = eddl.ReLu( eddl.GaussianNoise( eddl.BatchNormalization(eddl.Dense(layer, 1024), True), 0.3)) layer = eddl.ReLu( eddl.GaussianNoise( eddl.BatchNormalization(eddl.Dense(layer, 1024), True), 0.3)) out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.sgd(0.01, 0.9), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)) eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") y_test = Tensor.load("mnist_tsY.bin") if args.small: x_train = x_train.select([":6000"]) y_train = y_train.select([":6000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) x_train.div_(255.0) x_test.div_(255.0) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) # LR annealing if args.epochs < 4: return eddl.setlr(net, [0.005, 0.9]) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs // 2) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) eddl.setlr(net, [0.001, 0.9]) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs // 2) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) eddl.setlr(net, [0.0001, 0.9]) eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs // 4) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) print("All done")
def main(args): eddl.download_cifar10() num_classes = 10 in_ = eddl.Input([3, 32, 32]) layer = in_ layer = eddl.RandomCropScale(layer, [0.8, 1.0]) layer = eddl.RandomHorizontalFlip(layer) layer = eddl.ReLu(BG(eddl.Conv(layer, 64, [3, 3], [1, 1], "same", False))) layer = eddl.Pad(layer, [0, 1, 1, 0]) for i in range(3): layer = ResBlock(layer, 64, 0, i == 0) for i in range(4): layer = ResBlock(layer, 128, i == 0) for i in range(6): layer = ResBlock(layer, 256, i == 0) for i in range(3): layer = ResBlock(layer, 512, i == 0) layer = eddl.MaxPool(layer, [4, 4]) layer = eddl.Reshape(layer, [-1]) out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.sgd(0.001, 0.9), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)) eddl.summary(net) eddl.plot(net, "model.pdf", "TB") x_train = Tensor.load("cifar_trX.bin") y_train = Tensor.load("cifar_trY.bin") x_train.div_(255.0) x_test = Tensor.load("cifar_tsX.bin") y_test = Tensor.load("cifar_tsY.bin") x_test.div_(255.0) if args.small: # this is slow, make it really small x_train = x_train.select([":500"]) y_train = y_train.select([":500"]) x_test = x_test.select([":100"]) y_test = y_test.select([":100"]) lr = 0.01 for j in range(3): lr /= 10.0 eddl.setlr(net, [lr, 0.9]) for i in range(args.epochs): eddl.fit(net, [x_train], [y_train], args.batch_size, 1) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) print("All done")
def main(args): eddl.download_cifar10() num_classes = 10 in_ = eddl.Input([3, 32, 32]) layer = in_ layer = eddl.RandomCropScale(layer, [0.8, 1.0]) layer = eddl.RandomFlip(layer, 1) layer = eddl.ReLu(BG(eddl.Conv(layer, 64, [3, 3], [1, 1]))) layer = eddl.Pad(layer, [0, 1, 1, 0]) layer = ResBlock(layer, 64, 2, True) layer = ResBlock(layer, 64, 2, False) layer = ResBlock(layer, 128, 2, True) layer = ResBlock(layer, 128, 2, False) layer = ResBlock(layer, 256, 2, True) layer = ResBlock(layer, 256, 2, False) layer = ResBlock(layer, 256, 2, True) layer = ResBlock(layer, 256, 2, False) layer = eddl.Reshape(layer, [-1]) layer = eddl.ReLu(BG(eddl.Dense(layer, 512))) out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.sgd(0.01, 0.9), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem) ) eddl.summary(net) eddl.plot(net, "model.pdf", "TB") x_train = Tensor.load("cifar_trX.bin") y_train = Tensor.load("cifar_trY.bin") x_train.div_(255.0) x_test = Tensor.load("cifar_tsX.bin") y_test = Tensor.load("cifar_tsY.bin") x_test.div_(255.0) if args.small: x_train = x_train.select([":5000"]) y_train = y_train.select([":5000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) for i in range(args.epochs): eddl.fit(net, [x_train], [y_train], args.batch_size, 1) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) print("All done")
def main(args): eddl.download_cifar10() num_classes = 10 in_ = eddl.Input([3, 32, 32]) layer = in_ layer = eddl.RandomCropScale(layer, [0.8, 1.0]) layer = eddl.RandomFlip(layer, 1) layer = eddl.RandomCutout(layer, [0.1, 0.3], [0.1, 0.3]) layer = eddl.MaxPool(Block3_2(layer, 64)) layer = eddl.MaxPool(Block3_2(layer, 128)) layer = eddl.MaxPool(Block1(Block3_2(layer, 256), 256)) layer = eddl.MaxPool(Block1(Block3_2(layer, 512), 512)) layer = eddl.MaxPool(Block1(Block3_2(layer, 512), 512)) layer = eddl.Reshape(layer, [-1]) layer = eddl.Activation(eddl.Dense(layer, 512), "relu") out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.sgd(0.001, 0.9), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem) ) eddl.setlogfile(net, "vgg16") eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("cifar_trX.bin") y_train = Tensor.load("cifar_trY.bin") x_train.div_(255.0) x_test = Tensor.load("cifar_tsX.bin") y_test = Tensor.load("cifar_tsY.bin") x_test.div_(255.0) if args.small: x_train = x_train.select([":5000"]) y_train = y_train.select([":5000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) for i in range(args.epochs): eddl.fit(net, [x_train], [y_train], args.batch_size, 1) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) print("All done")
def main(args): eddl.download_cifar10() num_classes = 10 in_ = eddl.Input([3, 32, 32]) layer = in_ layer = eddl.RandomHorizontalFlip(layer) layer = eddl.RandomCropScale(layer, [0.8, 1.0]) layer = eddl.RandomCutout(layer, [0.1, 0.5], [0.1, 0.5]) layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization( eddl.HeUniform(eddl.Conv(layer, 32, [3, 3], [1, 1], "same", False)), True)), [2, 2]) layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization( eddl.HeUniform(eddl.Conv(layer, 64, [3, 3], [1, 1], "same", False)), True)), [2, 2]) layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization( eddl.HeUniform(eddl.Conv(layer, 128, [3, 3], [1, 1], "same", False)), True)), [2, 2]) layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization( eddl.HeUniform(eddl.Conv(layer, 256, [3, 3], [1, 1], "same", False)), True)), [2, 2]) layer = eddl.Reshape(layer, [-1]) layer = eddl.Activation(eddl.BatchNormalization( eddl.Dense(layer, 128), True ), "relu") out = eddl.Softmax(eddl.BatchNormalization( eddl.Dense(layer, num_classes), True )) net = eddl.Model([in_], [out]) eddl.build( net, eddl.adam(0.001), ["softmax_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem) ) eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("cifar_trX.bin") y_train = Tensor.load("cifar_trY.bin") x_train.div_(255.0) x_test = Tensor.load("cifar_tsX.bin") y_test = Tensor.load("cifar_tsY.bin") x_test.div_(255.0) if args.small: x_train = x_train.select([":5000"]) y_train = y_train.select([":5000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) for i in range(args.epochs): eddl.fit(net, [x_train], [y_train], args.batch_size, 1) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) eddl.setlr(net, [0.0001]) for i in range(args.epochs): eddl.fit(net, [x_train], [y_train], args.batch_size, 1) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) print("All done")
def main(args): eddl.download_drive() in_1 = eddl.Input([3, 584, 584]) in_2 = eddl.Input([1, 584, 584]) layer = eddl.Concat([in_1, in_2]) layer = eddl.RandomCropScale(layer, [0.9, 1.0]) layer = eddl.CenteredCrop(layer, [512, 512]) img = eddl.Select(layer, ["0:3"]) mask = eddl.Select(layer, ["3"]) # DA net danet = eddl.Model([in_1, in_2], []) eddl.build(danet) if args.gpu: eddl.toGPU(danet, mem="low_mem") eddl.summary(danet) # SegNet in_ = eddl.Input([3, 512, 512]) out = eddl.Sigmoid(UNetWithPadding(in_)) segnet = eddl.Model([in_], [out]) eddl.build( segnet, eddl.adam(0.00001), # Optimizer ["mse"], # Losses ["mse"], # Metrics eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem) ) eddl.summary(segnet) print("Reading training data") # x_train_f = Tensor.fromarray(np.load("drive_trX.npy").astype(np.float32)) x_train_f = Tensor.load("drive_trX.bin") x_train = x_train_f.permute([0, 3, 1, 2]) x_train.info() x_train.div_(255.0) print("Reading test data") # y_train = Tensor.fromarray(np.load("drive_trY.npy").astype(np.float32)) y_train = Tensor.load("drive_trY.bin") y_train.info() y_train.reshape_([20, 1, 584, 584]) y_train.div_(255.0) xbatch = Tensor([args.batch_size, 3, 584, 584]) ybatch = Tensor([args.batch_size, 1, 584, 584]) print("Starting training") for i in range(args.epochs): print("\nEpoch %d/%d" % (i + 1, args.epochs)) eddl.reset_loss(segnet) for j in range(args.num_batches): eddl.next_batch([x_train, y_train], [xbatch, ybatch]) # DA net eddl.forward(danet, [xbatch, ybatch]) xbatch_da = eddl.getOutput(img) ybatch_da = eddl.getOutput(mask) # SegNet eddl.train_batch(segnet, [xbatch_da], [ybatch_da]) eddl.print_loss(segnet, j) if i == args.epochs - 1: yout = eddl.getOutput(out).select(["0"]) yout.save("./out_%d.jpg" % j) print() print("All done")