def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([784]) layer = in_ layer = eddl.Activation(eddl.Dense(layer, 1024), "relu") layer = eddl.Activation(eddl.Dense(layer, 1024), "relu") layer = eddl.Activation(eddl.Dense(layer, 1024), "relu") out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) acc = CategoricalAccuracy() net.build( eddl.sgd(0.01, 0.9), [eddl.getLoss("soft_cross_entropy")], [acc], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem) ) eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") # y_test = Tensor.load("mnist_tsY.bin") x_train.div_(255.0) x_test.div_(255.0) num_samples = x_train.shape[0] num_batches = num_samples // args.batch_size test_samples = x_test.shape[0] test_batches = test_samples // args.batch_size eddl.set_mode(net, TRMODE) for i in range(args.epochs): for j in range(num_batches): print("Epoch %d/%d (batch %d/%d)" % (i + 1, args.epochs, j + 1, num_batches)) indices = np.random.randint(0, num_samples, args.batch_size) eddl.train_batch(net, [x_train], [y_train], indices) for j in range(test_batches): print("Epoch %d/%d (batch %d/%d)" % (i + 1, args.epochs, j + 1, test_batches)) indices = np.random.randint(0, num_samples, args.batch_size) eddl.eval_batch(net, [x_train], [y_train], indices) print("All done")
def cassandra_fit(cass_ds, net, epochs=3): cs = 0 # current split = training cass_ds.current_split = cs num_batches = cass_ds.num_batches[cs] # loop through the epochs for e in range(epochs): cass_ds.rewind_splits(cs, shuffle=True) eddl.reset_loss(net) # loop through batches for b in trange(num_batches): x, y = cass_ds.load_batch() x.div_(255.0) tx, ty = [x], [y] eddl.train_batch(net, tx, ty) # print loss eddl.print_loss(net, b) print()
def main(args): num_classes = 1 size = [192, 192] # size of images thresh = 0.5 if args.out_dir: os.makedirs(args.out_dir, exist_ok=True) in_ = eddl.Input([3, size[0], size[1]]) out = SegNet(in_, num_classes) out_sigm = eddl.Sigmoid(out) net = eddl.Model([in_], [out_sigm]) eddl.build(net, eddl.adam(0.0001), ["cross_entropy"], ["mean_squared_error"], eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU()) eddl.summary(net) eddl.setlogfile(net, "skin_lesion_segmentation") training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugMirror(0.5), ecvl.AugFlip(0.5), ecvl.AugRotate([-180, 180]), ecvl.AugAdditivePoissonNoise([0, 10]), ecvl.AugGammaContrast([0.5, 1.5]), ecvl.AugGaussianBlur([0, 0.8]), ecvl.AugCoarseDropout([0, 0.3], [0.02, 0.05], 0.5) ]) validation_augs = ecvl.SequentialAugmentationContainer( [ecvl.AugResizeDim(size)]) dataset_augs = ecvl.DatasetAugmentations( [training_augs, validation_augs, None]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs) x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) y = Tensor([args.batch_size, d.n_channels_gt_, size[0], size[1]]) num_samples_train = len(d.GetSplit()) num_batches_train = num_samples_train // args.batch_size d.SetSplit(ecvl.SplitType.validation) num_samples_validation = len(d.GetSplit()) num_batches_validation = num_samples_validation // args.batch_size indices = list(range(args.batch_size)) evaluator = utils.Evaluator() print("Starting training") for e in range(args.epochs): print("Epoch {:d}/{:d} - Training".format(e + 1, args.epochs), flush=True) d.SetSplit(ecvl.SplitType.training) eddl.reset_loss(net) s = d.GetSplit() random.shuffle(s) d.split_.training_ = s d.ResetAllBatches() for b in range(num_batches_train): print("Epoch {:d}/{:d} (batch {:d}/{:d}) - ".format( e + 1, args.epochs, b + 1, num_batches_train), end="", flush=True) d.LoadBatch(x, y) x.div_(255.0) y.div_(255.0) tx, ty = [x], [y] eddl.train_batch(net, tx, ty, indices) eddl.print_loss(net, b) print() print("Saving weights") eddl.save(net, "isic_segmentation_checkpoint_epoch_%s.bin" % e, "bin") d.SetSplit(ecvl.SplitType.validation) evaluator.ResetEval() print("Epoch %d/%d - Evaluation" % (e + 1, args.epochs), flush=True) for b in range(num_batches_validation): n = 0 print("Epoch {:d}/{:d} (batch {:d}/{:d}) ".format( e + 1, args.epochs, b + 1, num_batches_validation), end="", flush=True) d.LoadBatch(x, y) x.div_(255.0) y.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out_sigm) for k in range(args.batch_size): img = output.select([str(k)]) gt = y.select([str(k)]) img_np = np.array(img, copy=False) gt_np = np.array(gt, copy=False) iou = evaluator.BinaryIoU(img_np, gt_np, thresh=thresh) print("- IoU: %.6g " % iou, end="", flush=True) if args.out_dir: # C++ BinaryIoU modifies image as a side effect img_np[img_np >= thresh] = 1 img_np[img_np < thresh] = 0 img_t = ecvl.TensorToView(img) img_t.colortype_ = ecvl.ColorType.GRAY img_t.channels_ = "xyc" img.mult_(255.) # orig_img orig_img = x.select([str(k)]) orig_img.mult_(255.) orig_img_t = ecvl.TensorToImage(orig_img) orig_img_t.colortype_ = ecvl.ColorType.BGR orig_img_t.channels_ = "xyc" tmp, labels = ecvl.Image.empty(), ecvl.Image.empty() ecvl.CopyImage(img_t, tmp, ecvl.DataType.uint8) ecvl.ConnectedComponentsLabeling(tmp, labels) ecvl.CopyImage(labels, tmp, ecvl.DataType.uint8) contours = ecvl.FindContours(tmp) ecvl.CopyImage(orig_img_t, tmp, ecvl.DataType.uint8) tmp_np = np.array(tmp, copy=False) for cseq in contours: for c in cseq: tmp_np[c[0], c[1], 0] = 0 tmp_np[c[0], c[1], 1] = 0 tmp_np[c[0], c[1], 2] = 255 filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext(os.path.basename(filename)) bname = "%s.png" % head output_fn = os.path.join(args.out_dir, bname) ecvl.ImWrite(output_fn, tmp) if e == 0: gt_t = ecvl.TensorToView(gt) gt_t.colortype_ = ecvl.ColorType.GRAY gt_t.channels_ = "xyc" gt.mult_(255.) gt_filename = d.samples_[d.GetSplit()[n]].label_path_ gt_fn = os.path.join(args.out_dir, os.path.basename(gt_filename)) ecvl.ImWrite(gt_fn, gt_t) n += 1 print() print("MIoU: %.6g" % evaluator.MeanMetric())
def main(args): net_name = "vgg16" num_classes = 2 size = [256, 256] # size of images ### Parse GPU if args.gpu: gpus = [int(i) for i in args.gpu] else: gpus = [] print('GPUs mask: %r' % gpus) ### Get Network net_init = eddl.HeNormal net, dataset_augs = get_net(net_name='vgg16', in_size=size, num_classes=num_classes, lr=args.lr, augs=args.augs_on, gpus=gpus, lsb=args.lsb, init=net_init, dropout=args.dropout, l2_reg=args.l2_reg) out = net.layers[-1] ## Load weights if requested if args.init_weights_fn: print("Loading initialization weights") eddl.load(net, args.init_weights_fn) ## Check options if args.out_dir: working_dir = "model_cnn_%s_ps.%d_bs_%d_lr_%.2e" % ( net_name, size[0], args.batch_size, args.lr) res_dir = os.path.join(args.out_dir, working_dir) try: os.makedirs(res_dir, exist_ok=True) except: print("Directory already exists.") sys.exit() ######################################## ### Set database and read split file ### ######################################## if not args.cassandra_pwd_fn: cass_pass = getpass('Insert Cassandra password: '******'prom', password=cass_pass) #cd = CassandraDataset(ap, ['cassandra_db']) cd = CassandraDataset(ap, ['127.0.0.1'], seed=args.seed) # Check if file exists if Path(args.splits_fn).exists(): # Load splits cd.load_splits(args.splits_fn, batch_size=args.batch_size, augs=dataset_augs) else: print("Split file %s not found" % args.splits_fn) sys.exit(-1) print('Number of batches for each split (train, val, test):', cd.num_batches) ## validation index check and creation of split indexes lists if args.val_split_indexes: n_splits = cd.num_splits out_indexes = [i for i in args.val_split_indexes if i > (n_splits - 1)] if out_indexes: print("Not valid validation split index: %r" % out_indexes) sys.exit(-1) val_splits = args.val_split_indexes test_splits = args.test_split_indexes train_splits = [ i for i in range(n_splits) if (i not in val_splits) and (i not in test_splits) ] num_batches_tr = np.sum([cd.num_batches[i] for i in train_splits]) num_batches_val = np.sum([cd.num_batches[i] for i in val_splits]) print("Train splits: %r" % train_splits) print("Val splits: %r" % val_splits) print("Test splits: %r" % test_splits) else: num_batches_tr = cd.num_batches[0] num_batches_val = cd.num_batches[1] ################################ #### Training and evaluation ### ################################ print("Defining metric...", flush=True) metric_fn = eddl.getMetric("categorical_accuracy") loss_fn = eddl.getLoss("soft_cross_entropy") print("Starting training", flush=True) loss_l = [] acc_l = [] val_loss_l = [] val_acc_l = [] patience_cnt = 0 val_acc_max = 0.0 #### Code used to find best learning rate. Comment it to perform an actual training if args.find_opt_lr: max_epochs = args.epochs lr_start = args.lr lr_end = args.lr_end lr_f = lambda x: 10**(np.log10(lr_start) + ( (np.log10(lr_end) - np.log10(lr_start)) / max_epochs) * x) #### ### Main loop across epochs for e in range(args.epochs): ## SET LT if args.find_opt_lr: eddl.setlr(net, [lr_f(e)]) ### Training cd.current_split = 0 ## Set the training split as the current one print("Epoch {:d}/{:d} - Training".format(e + 1, args.epochs), flush=True) cd.rewind_splits(shuffle=True) eddl.reset_loss(net) total_metric = [] total_loss = [] ### Looping across batches of training data pbar = tqdm(range(num_batches_tr)) for b_index, b in enumerate(pbar): if args.val_split_indexes: x, y = cd.load_batch_cross(not_splits=val_splits + test_splits) else: x, y = cd.load_batch() x.div_(255.0) tx, ty = [x], [y] eddl.train_batch(net, tx, ty) #print bratch train results instances = (b_index + 1) * args.batch_size loss = eddl.get_losses(net)[0] metr = eddl.get_metrics(net)[0] msg = "Epoch {:d}/{:d} (batch {:d}/{:d}) - loss: {:.3f}, acc: {:.3f}".format( e + 1, args.epochs, b + 1, num_batches_tr, loss, metr) pbar.set_postfix_str(msg) total_loss.append(loss) total_metric.append(metr) loss_l.append(np.mean(total_loss)) acc_l.append(np.mean(total_metric)) pbar.close() ### Evaluation on validation set batches cd.current_split = 1 ## Set validation split as the current one total_metric = [] total_loss = [] print("Epoch %d/%d - Evaluation" % (e + 1, args.epochs), flush=True) pbar = tqdm(range(num_batches_val)) for b_index, b in enumerate(pbar): if args.val_split_indexes: x, y = cd.load_batch_cross(not_splits=train_splits + test_splits) else: x, y = cd.load_batch() x.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out) sum_ca = 0.0 ## sum of samples accuracy within a batch sum_ce = 0.0 ## sum of losses within a batch n = 0 for k in range(x.getShape()[0]): result = output.select([str(k)]) target = y.select([str(k)]) ca = metric_fn.value(target, result) ce = loss_fn.value(target, result) total_metric.append(ca) total_loss.append(ce) sum_ca += ca sum_ce += ce n += 1 msg = "Epoch {:d}/{:d} (batch {:d}/{:d}) loss: {:.3f}, acc: {:.3f} ".format( e + 1, args.epochs, b + 1, num_batches_val, (sum_ce / n), (sum_ca / n)) pbar.set_postfix_str(msg) pbar.close() val_batch_acc_avg = np.mean(total_metric) val_batch_loss_avg = np.mean(total_loss) val_loss_l.append(val_batch_loss_avg) val_acc_l.append(val_batch_acc_avg) print("loss: {:.3f}, acc: {:.3f}, val_loss: {:.3f}, val_acc: {:.3f}\n". format(loss_l[-1], acc_l[-1], val_loss_l[-1], val_acc_l[-1])) ## Save weights if args.save_weights: print("Saving weights") path = os.path.join( res_dir, "promort_%s_weights_ep_%s_vacc_%.2f.bin" % (net_name, e, val_acc_l[-1])) eddl.save(net, path, "bin") # Dump history at the end of each epoch so if the job is interrupted data are not lost. if args.out_dir: history = { 'loss': loss_l, 'acc': acc_l, 'val_loss': val_loss_l, 'val_acc': val_acc_l } pickle.dump(history, open(os.path.join(res_dir, 'history.pickle'), 'wb')) ### Patience check if val_acc_l[-1] > val_acc_max: val_acc_max = val_acc_l[-1] patience_cnt = 0 else: patience_cnt += 1 if patience_cnt > args.patience: ## Exit and complete the training print("Got maximum patience... training completed") break
def main(args): num_classes = 1 size = [512, 512] # size of images thresh = 0.5 best_dice = -1 if args.out_dir: os.makedirs(args.out_dir, exist_ok=True) in_ = eddl.Input([1, size[0], size[1]]) out = SegNetBN(in_, num_classes) out_sigm = eddl.Sigmoid(out) net = eddl.Model([in_], [out_sigm]) eddl.build(net, eddl.adam(0.0001), ["cross_entropy"], ["mean_squared_error"], eddl.CS_GPU([1], mem='low_mem') if args.gpu else eddl.CS_CPU()) eddl.summary(net) eddl.setlogfile(net, "pneumothorax_segmentation_training") if args.ckpts and os.path.exists(args.ckpts): print("Loading checkpoints '{}'".format(args.ckpts)) eddl.load(net, args.ckpts, 'bin') training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugMirror(0.5), ecvl.AugRotate([-10, 10]), ecvl.AugBrightness([0, 30]), ecvl.AugGammaContrast([0, 3]), ]) validation_augs = ecvl.SequentialAugmentationContainer( [ecvl.AugResizeDim(size)]) dataset_augs = ecvl.DatasetAugmentations( [training_augs, validation_augs, None]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs, ecvl.ColorType.GRAY) # Prepare tensors which store batch x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) y = Tensor([args.batch_size, d.n_channels_gt_, size[0], size[1]]) # Retrieve indices of images with a black ground truth # which are not include in a split train_split = d.GetSplit(ecvl.SplitType.training) val_split = d.GetSplit(ecvl.SplitType.validation) test_split = d.GetSplit(ecvl.SplitType.test) all_split = set(train_split + val_split + test_split) images_list = set(range(len(d.samples_))) # Obtain images with black ground truth black_images = images_list - all_split # Add a 25% of training samples with black ground truth. num_samples_train = math.floor(len(train_split) * 1.25) num_batches_train = num_samples_train // args.batch_size # Add a 25% of validation samples with black ground truth. num_samples_validation = math.floor(len(val_split) * 1.25) num_batches_validation = num_samples_validation // args.batch_size black_images = list(black_images) black_training = black_images[0:-(num_samples_validation - len(val_split))] black_validation = black_images[-(num_samples_validation - len(val_split)):] indices = list(range(args.batch_size)) evaluator = utils.Evaluator() print("Starting training") for e in range(args.epochs): print("Epoch {:d}/{:d} - Training".format(e + 1, args.epochs), flush=True) d.SetSplit(ecvl.SplitType.training) eddl.reset_loss(net) s = d.GetSplit() random.shuffle(s) d.split_.training_ = s random.shuffle(black_training) d.ResetAllBatches() # Indices to track mask and black vector in PneumothoraxLoadBatch m_i = 0 b_i = 0 for i, b in enumerate(range(num_batches_train)): d, images, labels, _, m_i, b_i = PneumothoraxLoadBatch( d, black_training, m_i, b_i) x, y = fill_tensors(images, labels, x, y) x.div_(255.0) y.div_(255.0) eddl.train_batch(net, [x], [y], indices) if i % args.log_interval == 0: print("Epoch {:d}/{:d} (batch {:d}/{:d}) - ".format( e + 1, args.epochs, b + 1, num_batches_train), end="", flush=True) eddl.print_loss(net, b) print() d.SetSplit(ecvl.SplitType.validation) evaluator.ResetEval() print("Epoch %d/%d - Evaluation" % (e + 1, args.epochs), flush=True) m_i = 0 b_i = 0 for b in range(num_batches_validation): n = 0 print("Epoch {:d}/{:d} (batch {:d}/{:d}) ".format( e + 1, args.epochs, b + 1, num_batches_validation), end="", flush=True) d, images, labels, names, m_i, b_i = PneumothoraxLoadBatch( d, black_validation, m_i, b_i) x, y = fill_tensors(images, labels, x, y) x.div_(255.0) y.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out_sigm) # Compute Dice metric and optionally save the output images for k in range(args.batch_size): pred = output.select([str(k)]) gt = y.select([str(k)]) pred_np = np.array(pred, copy=False) gt_np = np.array(gt, copy=False) # DiceCoefficient modifies image as a side effect dice = evaluator.DiceCoefficient(pred_np, gt_np, thresh=thresh) print("- Dice: {:.6f} ".format(dice), end="", flush=True) if args.out_dir: # Save original image fused together with prediction and # ground truth pred_np *= 255 pred_ecvl = ecvl.TensorToImage(pred) pred_ecvl.colortype_ = ecvl.ColorType.GRAY pred_ecvl.channels_ = "xyc" ecvl.ResizeDim(pred_ecvl, pred_ecvl, (1024, 1024), ecvl.InterpolationType.nearest) filename_gt = names[n + 1] gt_ecvl = ecvl.ImRead(filename_gt, ecvl.ImReadMode.GRAYSCALE) filename = names[n] # Image as BGR img_ecvl = ecvl.ImRead(filename) ecvl.Stack([img_ecvl, img_ecvl, img_ecvl], img_ecvl) img_ecvl.channels_ = "xyc" img_ecvl.colortype_ = ecvl.ColorType.BGR image_np = np.array(img_ecvl, copy=False) pred_np = np.array(pred_ecvl, copy=False) gt_np = np.array(gt_ecvl, copy=False) pred_np = pred_np.squeeze() gt_np = gt_np.squeeze() # Prediction summed in R channel image_np[:, :, -1] = np.where(pred_np == 255, pred_np, image_np[:, :, -1]) # Ground truth summed in G channel image_np[:, :, 1] = np.where(gt_np == 255, gt_np, image_np[:, :, 1]) n += 2 head, tail = os.path.splitext(os.path.basename(filename)) bname = "{}.png".format(head) filepath = os.path.join(args.out_dir, bname) ecvl.ImWrite(filepath, img_ecvl) print() mean_dice = evaluator.MeanMetric() if mean_dice > best_dice: print("Saving weights") eddl.save( net, "pneumothorax_segnetBN_adam_lr_0.0001_" "loss_ce_size_512_{}.bin".format(e + 1), "bin") best_dice = mean_dice print("Mean Dice Coefficient: {:.6g}".format(mean_dice))
dataset.split_.training_ = split # Training for batch_idx in range(n_train_batches): stdout.write( f"Epoch {epoch}/{epochs} (batch {batch_idx:>4}/{n_train_batches}) - " ) stdout.flush() start_time = time() dataset.LoadBatch(x, y) # Load data eddlT.div_(x, 255.0) # Preprocessing eddl.train_batch(net, [x], [y]) # Perform training eddl.print_loss(net, batch_idx) stdout.write(f"- Elapsed time: {time()-start_time:.2f} seconds\n") stdout.flush() print("Saving model...") eddl.save_net_to_onnx_file(net, "padchest_VGG16_adam_lr-0.0001.onnx") # Validation dataset.SetSplit(ecvl.SplitType.validation) # Set validation split eddl.reset_loss(net) # Reset errors print("Starting validation:") for batch_idx in range(n_validation_batches): stdout.write(
def classificate(args): args = dotdict(args) ckpts_dir = opjoin(settings.TRAINING_DIR, 'ckpts') outputfile = None inference = None train = True if args.mode == 'training' else False batch_size = args.batch_size if args.mode == 'training' else args.test_batch_size weight_id = args.weight_id weight = dj_models.ModelWeights.objects.get(id=weight_id) if train: pretrained = None if weight.pretrained_on: pretrained = weight.pretrained_on.location else: inference_id = args.inference_id inference = dj_models.Inference.objects.get(id=inference_id) pretrained = weight.location save_stdout = sys.stdout size = [args.input_h, args.input_w] # Height, width try: model = bindings.models_binding[args.model_id] except KeyError: raise Exception( f'Model with id: {args.model_id} not found in bindings.py') try: dataset_path = str( dj_models.Dataset.objects.get(id=args.dataset_id).path) except KeyError: raise Exception( f'Dataset with id: {args.dataset_id} not found in bindings.py') dataset = bindings.dataset_binding.get(args.dataset_id) if dataset is None and not train: # Binding does not exist. it's a single image dataset # Use as dataset "stub" the dataset on which model has been trained dataset = bindings.dataset_binding.get(weight.dataset_id.id) elif dataset is None and train: raise Exception( f'Dataset with id: {args.dataset_id} not found in bindings.py') basic_augs = ecvl.SequentialAugmentationContainer( [ecvl.AugResizeDim(size)]) train_augs = basic_augs val_augs = basic_augs test_augs = basic_augs if args.train_augs: train_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugmentationFactory.create(args.train_augs) ]) if args.val_augs: val_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugmentationFactory.create(args.val_augs) ]) if args.test_augs: test_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugmentationFactory.create(args.test_augs) ]) logging.info('Reading dataset') print('Reading dataset', flush=True) dataset = dataset( dataset_path, batch_size, ecvl.DatasetAugmentations([train_augs, val_augs, test_augs])) d = dataset.d num_classes = dataset.num_classes in_ = eddl.Input([d.n_channels_, size[0], size[1]]) out = model(in_, num_classes) # out is already softmaxed in classific models net = eddl.Model([in_], [out]) if train: logfile = open(Path(weight.logfile), 'w') else: logfile = open(inference.logfile, 'w') outputfile = open(inference.outputfile, 'w') with redirect_stdout(logfile): # Save args to file print('args: ' + json.dumps(args, indent=2, sort_keys=True), flush=True) logging.info('args: ' + json.dumps(args, indent=2, sort_keys=True)) eddl.build( net, eddl.sgd(args.lr, 0.9), [bindings.losses_binding.get(args.loss)], [bindings.metrics_binding.get(args.metric)], eddl.CS_GPU([1], mem='low_mem') if args.gpu else eddl.CS_CPU()) eddl.summary(net) if pretrained and os.path.exists(pretrained): eddl.load(net, pretrained) logging.info('Weights loaded') # Create tensor for images and labels images = eddlT.create([batch_size, d.n_channels_, size[0], size[1]]) labels = eddlT.create([batch_size, num_classes]) logging.info(f'Starting {args.mode}') print(f'Starting {args.mode}', flush=True) if train: num_samples_train = len(d.GetSplit(ecvl.SplitType.training)) num_batches_train = num_samples_train // batch_size num_samples_val = len(d.GetSplit(ecvl.SplitType.validation)) num_batches_val = num_samples_val // batch_size indices = list(range(batch_size)) for e in range(args.epochs): eddl.reset_loss(net) d.SetSplit(ecvl.SplitType.training) s = d.GetSplit() random.shuffle(s) d.split_.training_ = s d.ResetCurrentBatch() # total_loss = 0. # total_metric = 0. for i in range(num_batches_train): d.LoadBatch(images, labels) images.div_(255.0) eddl.train_batch(net, [images], [labels], indices) total_loss = net.fiterr[0] total_metric = net.fiterr[1] print( f'Train Epoch: {e + 1}/{args.epochs} [{i + 1}/{num_batches_train}] {net.lout[0].name}' f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})', flush=True) logging.info( f'Train Epoch: {e + 1}/{args.epochs} [{i + 1}/{num_batches_train}] {net.lout[0].name}' f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})' ) eddl.save(net, opjoin(ckpts_dir, f'{weight_id}.bin')) logging.info('Weights saved') print('Weights saved', flush=True) if len(d.split_.validation_) > 0: logging.info(f'Validation {e}/{args.epochs}') print(f'Validation {e}/{args.epochs}', flush=True) d.SetSplit(ecvl.SplitType.validation) d.ResetCurrentBatch() for i in range(num_batches_val): d.LoadBatch(images, labels) images.div_(255.0) eddl.eval_batch(net, [images], [labels], indices) # eddl.evaluate(net, [images], [labels]) total_loss = net.fiterr[0] total_metric = net.fiterr[1] print( f'Val Epoch: {e + 1}/{args.epochs} [{i + 1}/{num_batches_val}] {net.lout[0].name}' f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})', flush=True) logging.info( f'Val Epoch: {e + 1}/{args.epochs} [{i + 1}/{num_batches_val}] {net.lout[0].name}' f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})' ) else: d.SetSplit(ecvl.SplitType.test) num_samples_test = len(d.GetSplit()) num_batches_test = num_samples_test // batch_size preds = np.empty((0, num_classes), np.float64) for b in range(num_batches_test): d.LoadBatch(images) images.div_(255.0) eddl.forward(net, [images]) print(f'Infer Batch {b + 1}/{num_batches_test}', flush=True) logging.info(f'Infer Batch {b + 1}/{num_batches_test}') # print( # f'Evaluation {b + 1}/{num_batches} {net.lout[0].name}({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' # f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})') # logging.info( # f'Evaluation {b + 1}/{num_batches} {net.lout[0].name}({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' # f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})') # Save network predictions for i in range(batch_size): pred = np.array(eddlT.select(eddl.getTensor(out), i), copy=False) # gt = np.argmax(np.array(labels)[indices]) # pred = np.append(pred, gt).reshape((1, num_classes + 1)) preds = np.append(preds, pred, axis=0) pred_name = d.samples_[d.GetSplit()[b * batch_size + i]].location_ # print(f'{pred_name};{pred}') outputfile.write(f'{pred_name};{pred.tolist()}\n') outputfile.close() print('<done>') logfile.close() del net del out del in_ return
def main(args): num_classes = 8 size = [224, 224] # size of images in_ = eddl.Input([3, size[0], size[1]]) out = VGG16(in_, num_classes) net = eddl.Model([in_], [out]) eddl.build(net, eddl.sgd(0.001, 0.9), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU()) eddl.summary(net) eddl.setlogfile(net, "skin_lesion_classification") training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugMirror(.5), ecvl.AugFlip(.5), ecvl.AugRotate([-180, 180]), ecvl.AugAdditivePoissonNoise([0, 10]), ecvl.AugGammaContrast([0.5, 1.5]), ecvl.AugGaussianBlur([0, 0.8]), ecvl.AugCoarseDropout([0, 0.3], [0.02, 0.05], 0.5) ]) validation_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) dataset_augs = ecvl.DatasetAugmentations( [training_augs, validation_augs, None]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs) x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) y = Tensor([args.batch_size, len(d.classes_)]) num_samples_train = len(d.GetSplit()) num_batches_train = num_samples_train // args.batch_size d.SetSplit(ecvl.SplitType.validation) num_samples_val = len(d.GetSplit()) num_batches_val = num_samples_val // args.batch_size indices = list(range(args.batch_size)) metric = eddl.getMetric("categorical_accuracy") print("Starting training") for e in range(args.epochs): print("Epoch {:d}/{:d} - Training".format(e + 1, args.epochs), flush=True) if args.out_dir: current_path = os.path.join(args.out_dir, "Epoch_%d" % e) for c in d.classes_: c_dir = os.path.join(current_path, c) os.makedirs(c_dir, exist_ok=True) d.SetSplit(ecvl.SplitType.training) eddl.reset_loss(net) total_metric = [] s = d.GetSplit() random.shuffle(s) d.split_.training_ = s d.ResetAllBatches() for b in range(num_batches_train): print("Epoch {:d}/{:d} (batch {:d}/{:d}) - ".format( e + 1, args.epochs, b + 1, num_batches_train), end="", flush=True) d.LoadBatch(x, y) x.div_(255.0) tx, ty = [x], [y] eddl.train_batch(net, tx, ty, indices) eddl.print_loss(net, b) print() print("Saving weights") eddl.save(net, "isic_classification_checkpoint_epoch_%s.bin" % e, "bin") print("Epoch %d/%d - Evaluation" % (e + 1, args.epochs), flush=True) d.SetSplit(ecvl.SplitType.validation) for b in range(num_batches_val): n = 0 print("Epoch {:d}/{:d} (batch {:d}/{:d}) - ".format( e + 1, args.epochs, b + 1, num_batches_val), end="", flush=True) d.LoadBatch(x, y) x.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out) sum_ = 0.0 for k in range(args.batch_size): result = output.select([str(k)]) target = y.select([str(k)]) ca = metric.value(target, result) total_metric.append(ca) sum_ += ca if args.out_dir: result_a = np.array(result, copy=False) target_a = np.array(target, copy=False) classe = np.argmax(result_a).item() gt_class = np.argmax(target_a).item() single_image = x.select([str(k)]) img_t = ecvl.TensorToView(single_image) img_t.colortype_ = ecvl.ColorType.BGR single_image.mult_(255.) filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext(os.path.basename(filename)) bname = "%s_gt_class_%s.png" % (head, gt_class) cur_path = os.path.join(current_path, d.classes_[classe], bname) ecvl.ImWrite(cur_path, img_t) n += 1 print("categorical_accuracy:", sum_ / args.batch_size) total_avg = sum(total_metric) / len(total_metric) print("Total categorical accuracy:", total_avg)
def main(args): num_classes = 10 size = [28, 28] # size of images ctype = ecvl.ColorType.GRAY in_ = eddl.Input([1, size[0], size[1]]) out = LeNet(in_, num_classes) net = eddl.Model([in_], [out]) eddl.build(net, eddl.sgd(0.001, 0.9), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU()) eddl.summary(net) eddl.setlogfile(net, "mnist") training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugRotate([-5, 5]), ecvl.AugAdditivePoissonNoise([0, 10]), ecvl.AugGaussianBlur([0, 0.8]), ecvl.AugCoarseDropout([0, 0.3], [0.02, 0.05], 0), ]) dataset_augs = ecvl.DatasetAugmentations([training_augs, None, None]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs, ctype) x_train = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) y_train = Tensor([args.batch_size, len(d.classes_)]) num_samples = len(d.GetSplit()) num_batches = num_samples // args.batch_size indices = list(range(args.batch_size)) print("Training") for i in range(args.epochs): eddl.reset_loss(net) s = d.GetSplit() random.shuffle(s) d.split_.training_ = s d.ResetCurrentBatch() for j in range(num_batches): print("Epoch %d/%d (batch %d/%d) - " % (i + 1, args.epochs, j + 1, num_batches), end="", flush=True) d.LoadBatch(x_train, y_train) x_train.div_(255.0) tx, ty = [x_train], [y_train] eddl.train_batch(net, tx, ty, indices) eddl.print_loss(net, j) print() print("Saving weights") eddl.save(net, "mnist_checkpoint.bin", "bin") print("Evaluation") d.SetSplit(ecvl.SplitType.test) num_samples = len(d.GetSplit()) num_batches = num_samples // args.batch_size for i in range(num_batches): print("batch %d / %d - " % (i, num_batches), end="", flush=True) d.LoadBatch(x_train, y_train) x_train.div_(255.0) eddl.evaluate(net, [x_train], [y_train])
def main(args): eddl.download_mnist() num_classes = 10 in_ = eddl.Input([784]) layer = in_ layer = eddl.ReLu(eddl.Dense(layer, 1024)) layer = eddl.ReLu(eddl.Dense(layer, 1024)) layer = eddl.ReLu(eddl.Dense(layer, 1024)) out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.sgd(0.001, 0.9), ["softmax_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)) eddl.summary(net) eddl.plot(net, "model.pdf") eddl.setlogfile(net, "mnist") x_train = Tensor.load("mnist_trX.bin") y_train = Tensor.load("mnist_trY.bin") x_test = Tensor.load("mnist_tsX.bin") y_test = Tensor.load("mnist_tsY.bin") if args.small: x_train = x_train.select([":6000"]) y_train = y_train.select([":6000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) x_train.div_(255.0) x_test.div_(255.0) s = x_train.shape num_batches = s[0] // args.batch_size for i in range(args.epochs): eddl.reset_loss(net) print("Epoch %d/%d (%d batches)" % (i + 1, args.epochs, num_batches)) for j in range(num_batches): indices = np.random.randint(0, s[0], args.batch_size) eddl.train_batch(net, [x_train], [y_train], indices) losses1 = eddl.get_losses(net) metrics1 = eddl.get_metrics(net) for l, m in zip(losses1, metrics1): print("Loss: %.6f\tMetric: %.6f" % (l, m)) s = x_test.shape num_batches = s[0] // args.batch_size for j in range(num_batches): indices = np.arange(j * args.batch_size, j * args.batch_size + args.batch_size) eddl.eval_batch(net, [x_test], [y_test], indices) losses2 = eddl.get_losses(net) metrics2 = eddl.get_metrics(net) for l, m in zip(losses2, metrics2): print("Loss: %.6f\tMetric: %.6f" % (l, m)) last_batch_size = s[0] % args.batch_size if last_batch_size: indices = np.arange(j * args.batch_size, j * args.batch_size + args.batch_size) eddl.eval_batch(net, [x_test], [y_test], indices) losses3 = eddl.get_losses(net) metrics3 = eddl.get_metrics(net) for l, m in zip(losses3, metrics3): print("Loss: %.6f\tMetric: %.6f" % (l, m)) print("All done")
def main(args): batch_size = args.batch_size image_size = args.size, args.size thresh = 0.5 if args.weights: os.makedirs(args.weights, exist_ok=True) training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(image_size, ecvl.InterpolationType.cubic, gt_interp=ecvl.InterpolationType.nearest), ecvl.AugMirror(.5), ecvl.AugFlip(.5), ecvl.AugRotate([-180, 180]), ecvl.AugAdditivePoissonNoise([0, 10]), ecvl.AugGammaContrast([0.5, 1.5]), ecvl.AugGaussianBlur([0, 0.8]), ecvl.AugCoarseDropout([0, 0.03], [0.02, 0.05], 0.25), ecvl.AugToFloat32(255, divisor_gt=255), ecvl.AugNormalize([0.6681, 0.5301, 0.5247], [0.1337, 0.1480, 0.1595]), # isic stats ]) validation_test_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(image_size, ecvl.InterpolationType.cubic, gt_interp=ecvl.InterpolationType.nearest), ecvl.AugToFloat32(255, divisor_gt=255), ecvl.AugNormalize([0.6681, 0.5301, 0.5247], [0.1337, 0.1480, 0.1595]), # isic stats ]) dataset_augs = ecvl.DatasetAugmentations( [training_augs, validation_test_augs, validation_test_augs]) print('Reading dataset') d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs, ctype=ecvl.ColorType.RGB) num_classes = len(d.classes_) or d.n_channels_gt_ size = d.n_channels_, args.size, args.size if args.ckpts: net = eddl.import_net_from_onnx_file(args.ckpts, size) else: in_ = eddl.Input(size) out = Unet(in_, num_classes) out_sigm = eddl.Sigmoid(out) net = eddl.Model([in_], [out_sigm]) # model_path = utils.DownloadModel(segmentation_zoo[args.model]['url'], f'{args.model}.onnx', 'model_onnx') # net = eddl.import_net_from_onnx_file(model_path, size) # eddl.removeLayer(net, segmentation_zoo[args.model]['to_remove']) # top = eddl.getLayer(net, segmentation_zoo[args.model]['top']) # # out = eddl.Sigmoid(eddl.Conv(top, num_classes, [3, 3], name='last_layer')) # data_input = eddl.getLayer(net, segmentation_zoo[args.model]['input']) # input of the onnx # net = eddl.Model([data_input], [out]) loss_name = 'binary_cross_entropy' metric_name = 'mean_squared_error' eddl.build( net, eddl.adam(args.learning_rate), [loss_name], [metric_name], eddl.CS_GPU(args.gpu, mem="low_mem") if args.gpu else eddl.CS_CPU(), True) out = eddl.getOut(net)[0] # if not args.ckpts: # eddl.initializeLayer(net, "last_layer") eddl.summary(net) eddl.setlogfile(net, 'skin_lesion_segmentation') x = Tensor([args.batch_size, *size]) y = Tensor([args.batch_size, d.n_channels_gt_, size[1], size[2]]) miou = 0. if args.train: num_samples_train = len(d.GetSplit()) num_batches_train = num_samples_train // args.batch_size num_samples_val = len(d.GetSplit(ecvl.SplitType.validation)) num_batches_val = num_samples_val // args.batch_size evaluator = utils.Evaluator() print('Starting training') for e in range(args.epochs): d.SetSplit(ecvl.SplitType.training) eddl.reset_loss(net) s = d.GetSplit() random.shuffle(s) d.split_.training_ = s d.ResetAllBatches() for b in range(num_batches_train): d.LoadBatch(x, y) # x_ = x.select(["0"]) # x_.normalize_(0, 1) # x_.mult_(255.) # x_.save(f'images/train_{e}_{b}.png') # # y_ = y.select(["0"]) # # y_.mult_(255.) # y_.save(f'images/train_gt_{e}_{b}.png') eddl.train_batch(net, [x], [y]) losses = eddl.get_losses(net) metrics = eddl.get_metrics(net) print( f'Train - epoch [{e + 1}/{args.epochs}] - batch [{b + 1}/{num_batches_train}]' f' - {loss_name}={losses[0]:.3f} - {metric_name}={metrics[0]:.3f}', flush=True) d.SetSplit(ecvl.SplitType.validation) evaluator.ResetEval() eddl.reset_loss(net) for b in range(num_batches_val): n = 0 print( f'Validation - epoch [{e + 1}/{args.epochs}] - batch [{b + 1}/{num_batches_val}]' ) d.LoadBatch(x, y) eddl.forward(net, [x]) output = eddl.getOutput(out) for bs in range(args.batch_size): img = output.select([str(bs)]) gt = y.select([str(bs)]) img_np = np.array(img, copy=False) gt_np = np.array(gt, copy=False) iou = evaluator.BinaryIoU(img_np, gt_np, thresh=thresh) print(f' - IoU: {iou:.3f}', end="", flush=True) if args.out_dir: # C++ BinaryIoU modifies image as a side effect img_np[img_np >= thresh] = 1 img_np[img_np < thresh] = 0 img_t = ecvl.TensorToView(img) img_t.colortype_ = ecvl.ColorType.GRAY img_t.channels_ = "xyc" img.mult_(255.) # orig_img orig_img = x.select([str(bs)]) orig_img.mult_(255.) orig_img_t = ecvl.TensorToImage(orig_img) orig_img_t.colortype_ = ecvl.ColorType.BGR orig_img_t.channels_ = "xyc" tmp, labels = ecvl.Image.empty(), ecvl.Image.empty() ecvl.CopyImage(img_t, tmp, ecvl.DataType.uint8) ecvl.ConnectedComponentsLabeling(tmp, labels) ecvl.CopyImage(labels, tmp, ecvl.DataType.uint8) contours = ecvl.FindContours(tmp) ecvl.CopyImage(orig_img_t, tmp, ecvl.DataType.uint8) tmp_np = np.array(tmp, copy=False) for cseq in contours: for c in cseq: tmp_np[c[0], c[1], 0] = 0 tmp_np[c[0], c[1], 1] = 0 tmp_np[c[0], c[1], 2] = 255 filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext( os.path.basename(filename)) bname = "%s.png" % head output_fn = os.path.join(args.out_dir, bname) ecvl.ImWrite(output_fn, tmp) if e == 0: gt_t = ecvl.TensorToView(gt) gt_t.colortype_ = ecvl.ColorType.GRAY gt_t.channels_ = "xyc" gt.mult_(255.) gt_filename = d.samples_[d.GetSplit() [n]].label_path_ gt_fn = os.path.join(args.out_dir, os.path.basename(gt_filename)) ecvl.ImWrite(gt_fn, gt_t) n += 1 print() last_miou = evaluator.MIoU() print( f'Validation - epoch [{e + 1}/{args.epochs}] - Total MIoU: {last_miou:.3f}' ) if last_miou > miou: miou = last_miou eddl.save_net_to_onnx_file( net, os.path.join(args.weights, f'isic_segm_{args.model}_epoch_{e + 1}.onnx')) print('Weights saved') elif args.test: evaluator = utils.Evaluator() evaluator.ResetEval() d.SetSplit(ecvl.SplitType.test) num_samples_test = len(d.GetSplit()) num_batches_test = num_samples_test // batch_size for b in range(num_batches_test): n = 0 print(f'Test - batch [{b + 1}/{num_batches_test}]') d.LoadBatch(x, y) eddl.forward(net, [x]) output = eddl.getOutput(out) for bs in range(args.batch_size): img = output.select([str(bs)]) gt = y.select([str(bs)]) img_np, gt_np = np.array(img, copy=False), np.array(gt, copy=False) iou = evaluator.BinaryIoU(img_np, gt_np, thresh=thresh) print(f' - IoU: {iou:.3f}', end="", flush=True) if args.out_dir: # C++ BinaryIoU modifies image as a side effect img_np[img_np >= thresh] = 1 img_np[img_np < thresh] = 0 img_t = ecvl.TensorToView(img) img_t.colortype_ = ecvl.ColorType.GRAY img_t.channels_ = "xyc" img.mult_(255.) # orig_img orig_img = x.select([str(bs)]) orig_img.mult_(255.) orig_img_t = ecvl.TensorToImage(orig_img) orig_img_t.colortype_ = ecvl.ColorType.BGR orig_img_t.channels_ = "xyc" tmp, labels = ecvl.Image.empty(), ecvl.Image.empty() ecvl.CopyImage(img_t, tmp, ecvl.DataType.uint8) ecvl.ConnectedComponentsLabeling(tmp, labels) ecvl.CopyImage(labels, tmp, ecvl.DataType.uint8) contours = ecvl.FindContours(tmp) ecvl.CopyImage(orig_img_t, tmp, ecvl.DataType.uint8) tmp_np = np.array(tmp, copy=False) for cseq in contours: for c in cseq: tmp_np[c[0], c[1], 0] = 0 tmp_np[c[0], c[1], 1] = 0 tmp_np[c[0], c[1], 2] = 255 filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext(os.path.basename(filename)) bname = "%s.png" % head output_fn = os.path.join(args.out_dir, bname) ecvl.ImWrite(output_fn, tmp) gt_t = ecvl.TensorToView(gt) gt_t.colortype_ = ecvl.ColorType.GRAY gt_t.channels_ = "xyc" gt.mult_(255.) gt_filename = d.samples_[d.GetSplit()[n]].label_path_ gt_fn = os.path.join(args.out_dir, os.path.basename(gt_filename)) ecvl.ImWrite(gt_fn, gt_t) n += 1 miou = evaluator.MIoU() print(f'Test - Total MIoU: {miou:.3f}')
def main(args): batch_size = args.batch_size image_size = args.size, args.size if args.weights: os.makedirs(args.weights, exist_ok=True) training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(image_size, ecvl.InterpolationType.cubic), ecvl.AugMirror(.5), ecvl.AugFlip(.5), ecvl.AugRotate([-180, 180]), ecvl.AugAdditivePoissonNoise([0, 10]), ecvl.AugGammaContrast([0.5, 1.5]), ecvl.AugGaussianBlur([0, 0.8]), ecvl.AugCoarseDropout([0, 0.03], [0.02, 0.05], 0.25), ecvl.AugToFloat32(255), ]) validation_test_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(image_size), ecvl.AugToFloat32(255), ]) dataset_augs = ecvl.DatasetAugmentations( [training_augs, validation_test_augs, validation_test_augs]) print('Reading dataset') d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs, ctype=ecvl.ColorType.RGB) num_classes = len(d.classes_) size = d.n_channels_, args.size, args.size if args.ckpts: net = eddl.import_net_from_onnx_file(args.ckpts, size) else: model_path = utils.DownloadModel(classification_zoo[args.model]['url'], f'{args.model}.onnx', 'model_onnx') net = eddl.import_net_from_onnx_file(model_path, size) eddl.removeLayer(net, classification_zoo[args.model] ['to_remove']) # remove last Linear of resnet top = eddl.getLayer( net, classification_zoo[args.model]['top']) # get flatten of resnet out = eddl.Softmax(eddl.Dense(top, num_classes, True, 'classifier')) # true is for the bias data_input = eddl.getLayer( net, classification_zoo[args.model]['input']) # input of the onnx net = eddl.Model([data_input], [out]) eddl.build( net, eddl.adam(args.learning_rate), ['softmax_cross_entropy'], ['accuracy'], eddl.CS_GPU(args.gpu, mem="low_mem") if args.gpu else eddl.CS_CPU(), False) out = eddl.getOut(net)[0] if not args.ckpts: eddl.initializeLayer(net, "classifier") eddl.summary(net) eddl.setlogfile(net, 'skin_lesion_classification') x = Tensor([batch_size, *size]) y = Tensor([batch_size, num_classes]) metric_fn = eddl.getMetric('accuracy') best_accuracy = 0. if args.train: num_samples_train = len(d.GetSplit()) num_batches_train = num_samples_train // args.batch_size num_samples_val = len(d.GetSplit(ecvl.SplitType.validation)) num_batches_val = num_samples_val // args.batch_size print('Starting training') for e in range(args.epochs): if args.out_dir: current_path = os.path.join(args.out_dir, f'Epoch_{e}') for c in d.classes_: c_dir = os.path.join(current_path, c) os.makedirs(c_dir, exist_ok=True) d.SetSplit(ecvl.SplitType.training) eddl.reset_loss(net) s = d.GetSplit() random.shuffle(s) d.split_.training_ = s d.ResetAllBatches() for b in range(num_batches_train): d.LoadBatch(x, y) eddl.train_batch(net, [x], [y]) losses = eddl.get_losses(net) metrics = eddl.get_metrics(net) print( f'Train - epoch [{e + 1}/{args.epochs}] - batch [{b + 1}/{num_batches_train}]' f' - loss={losses[0]:.3f} - accuracy={metrics[0]:.3f}', flush=True) d.SetSplit(ecvl.SplitType.validation) values = np.zeros(num_batches_val) eddl.reset_loss(net) for b in range(num_batches_val): n = 0 d.LoadBatch(x, y) eddl.forward(net, [x]) output = eddl.getOutput(out) value = metric_fn.value(y, output) values[b] = value if args.out_dir: for k in range(args.batch_size): result = output.select([str(k)]) target = y.select([str(k)]) result_a = np.array(result, copy=False) target_a = np.array(target, copy=False) classe = np.argmax(result_a).item() gt_class = np.argmax(target_a).item() single_image = x.select([str(k)]) img_t = ecvl.TensorToView(single_image) img_t.colortype_ = ecvl.ColorType.BGR single_image.mult_(255.) filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext( os.path.basename(filename)) bname = '{}_gt_class_{}.png'.format(head, gt_class) cur_path = os.path.join(current_path, d.classes_[classe], bname) ecvl.ImWrite(cur_path, img_t) n += 1 print( f'Validation - epoch [{e + 1}/{args.epochs}] - batch [{b + 1}/{num_batches_val}] -' f' accuracy={np.mean(values[:b + 1] / batch_size):.3f}') last_accuracy = np.mean(values / batch_size) print( f'Validation - epoch [{e + 1}/{args.epochs}] - total accuracy={last_accuracy:.3f}' ) if last_accuracy > best_accuracy: best_accuracy = last_accuracy print('Saving weights') eddl.save_net_to_onnx_file( net, f'isic_classification_{args.model}_epoch_{e + 1}.onnx') elif args.test: d.SetSplit(ecvl.SplitType.test) num_samples_test = len(d.GetSplit()) num_batches_test = num_samples_test // batch_size values = np.zeros(num_batches_test) eddl.reset_loss(net) for b in range(num_batches_test): d.LoadBatch(x, y) eddl.forward(net, [x]) output = eddl.getOutput(out) value = metric_fn.value(y, output) values[b] = value if args.out_dir: n = 0 for k in range(args.batch_size): result = output.select([str(k)]) target = y.select([str(k)]) result_a = np.array(result, copy=False) target_a = np.array(target, copy=False) classe = np.argmax(result_a).item() gt_class = np.argmax(target_a).item() single_image = x.select([str(k)]) img_t = ecvl.TensorToView(single_image) img_t.colortype_ = ecvl.ColorType.BGR single_image.mult_(255.) filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext(os.path.basename(filename)) bname = "%s_gt_class_%s.png" % (head, gt_class) cur_path = os.path.join(args.out_dir, d.classes_[classe], bname) ecvl.ImWrite(cur_path, img_t) n += 1 print( f'Test - batch [{b + 1}/{num_batches_test}] - accuracy={np.mean(values[:b + 1] / batch_size):.3f}' ) print(f'Test - total accuracy={np.mean(values / batch_size):.3f}')
def main(args): """ Train a model on epilepsy detection with recurrent neural networks. """ index_training = [args.index] index_validation = [args.index_val] patient_id = args.id model_id = args.model epochs = args.epochs batch_size = args.batch_size resume_dir = args.resume starting_epoch = args.starting_epoch gpus = args.gpus model_checkpoint = None # Create dirs for the experiment if resume_dir is None: os.makedirs('experiments', exist_ok=True) exp_name = f'detection_recurrent_{patient_id}_LSTM' exp_dir = f'experiments/{exp_name}' os.makedirs(exp_dir, exist_ok=False) os.makedirs(exp_dir + '/models') else: exp_dir = resume_dir model_dir = exp_dir + '/models' for f in os.listdir(model_dir): if 'last' in f: model_checkpoint = os.path.join(model_dir, f) # if model_checkpoint is None: raise Exception(f'Last model not found in {model_dir}') # log_file = open(f'{exp_dir}/training_log.txt', 'w') log_file.write('epoch, train_loss, train_acc, val_acc_single_channel,' + ' val_f1score_single_channel, val_acc, val_f1score\n') log_file.flush() # Data Generator Object for training print('\n\nCreating Training Data Generator...', file=sys.stderr) dg = RawRecurrentDataGenerator( index_filenames=index_training, window_length=args.window_length, # in seconds shift=args.shift, # in seconds timesteps=args.timesteps, # in seconds sampling_rate=256, # in Hz batch_size=batch_size, in_training_mode=True, balance_batches=True, patient_id=patient_id) # print('\n\nCreating Validation Data Generator...', file=sys.stderr) dg_val = RawRecurrentDataGenerator( index_filenames=index_validation, window_length=args.window_length, shift=args.shift, timesteps=args.timesteps, sampling_rate=256, # in Hz batch_size=batch_size, in_training_mode=False, patient_id=patient_id) net = create_model(model_id, dg.input_shape, num_classes=2, filename=model_checkpoint, gpus=gpus) # best_val_acc = 0.0 for epoch in range(starting_epoch, epochs): print(f'\nTraining epoch {epoch+1} of {epochs}...', file=sys.stderr) dg.shuffle_data() # TRAINING STAGE eddl.reset_loss(net) # Set a progress bar for the training loop pbar = tqdm(range(len(dg))) for i in pbar: # Load batch of data x, y = dg[i] _y_ = numpy.zeros([len(y), 2]) for i in range(2): _y_[y == i, i] = 1 _y_ = _y_.reshape((len(y), 1, 2)) y = Tensor.fromarray(_y_) for channel in range(x.shape[3]): x_channel = x[:, :, :, channel] channel_tensor_batch = Tensor.fromarray(x_channel) # Forward and backward of the channel through the net eddl.train_batch(net, [channel_tensor_batch], [y]) losses = eddl.get_losses(net) #metrics = eddl.get_metrics(net) pbar.set_description( f'Training[loss={losses[0]:.5f}, acc=Not Available]') print() # VALIDATION print(f'\nValidation epoch {epoch+1}', file=sys.stderr) Y_true_single_channel = list() Y_pred_single_channel = list() Y_true = list() Y_pred = list() for j in tqdm(range(len(dg_val))): x, y = dg_val[j] channels_y_pred = list() for channel in range(x.shape[3]): x_channel = x[:, :, :, channel] channel_tensor_batch = Tensor.fromarray(x_channel) # Forward and backward of the channel through the net (y_pred, ) = eddl.predict(net, [channel_tensor_batch]) y_pred = y_pred.getdata() channels_y_pred.append(y_pred) Y_pred_single_channel += y_pred.argmax(axis=1).tolist() Y_true_single_channel += y.tolist() channels_y_pred = numpy.array(channels_y_pred) # (23, batch_size, 2) channels_y_pred = numpy.sum(channels_y_pred, axis=0) channels_y_pred = channels_y_pred / 23.0 # print(channels_y_pred.shape) -> (batch_size, 2) Y_true += y.tolist() Y_pred += channels_y_pred.argmax(axis=1).tolist() # y_true = numpy.array(Y_true) * 1.0 y_pred = numpy.array(Y_pred) * 1.0 y_true_single_channel = numpy.array(Y_true_single_channel) * 1.0 y_pred_single_channel = numpy.array(Y_pred_single_channel) * 1.0 val_accuracy_single_channel = sum( y_true_single_channel == y_pred_single_channel) / len( y_true_single_channel) cnf_matrix = confusion_matrix(y_true_single_channel, y_pred_single_channel) report = classification_report(y_true_single_channel, y_pred_single_channel) fscore_single_channel = f1_score(y_true_single_channel, y_pred_single_channel, labels=[0, 1], average='macro') print( '***************************************************************\n', file=sys.stderr) print(f'Epoch {epoch + 1}: Validation results\n', file=sys.stderr) print(' -- Single channel results (no combination of channels) --\n', file=sys.stderr) print(f'Validation acc : {val_accuracy_single_channel}', file=sys.stderr) print(f'Validation macro f1-score : {fscore_single_channel}', file=sys.stderr) print('Confussion matrix:', file=sys.stderr) print(f'{cnf_matrix}\n', file=sys.stderr) print('Classification report:', file=sys.stderr) print(report, file=sys.stderr) print( '\n--------------------------------------------------------------\n', file=sys.stderr) val_accuracy = sum(y_true == y_pred) / len(y_true) cnf_matrix = confusion_matrix(y_true, y_pred) report = classification_report(y_true, y_pred) fscore = f1_score(y_true, y_pred, labels=[0, 1], average='macro') print(' -- All channels involved (combined for each timestamp) --\n', file=sys.stderr) print(f'Validation acc : {val_accuracy}', file=sys.stderr) print(f'Validation macro f1-score : {fscore}', file=sys.stderr) print('Confussion matrix:', file=sys.stderr) print(f'{cnf_matrix}\n', file=sys.stderr) print('Classification report:', file=sys.stderr) print(report, file=sys.stderr) print( '***************************************************************\n\n', file=sys.stderr) log_file.write('%d,%d,%g,%g,%g,%g,%g\n' % (epoch, -1, losses[0], val_accuracy_single_channel, fscore_single_channel, val_accuracy, fscore)) log_file.flush() # Save best model if (val_accuracy > best_val_acc): best_val_acc = val_accuracy eddl.save_net_to_onnx_file( net, f'{exp_dir}/models/best_model_epoch_{epoch:04d}_val_acc_{val_accuracy:.4f}.onnx' ) eddl.save_net_to_onnx_file(net, f'{exp_dir}/models/last.onnx') # log_file.close()
def main(args): eddl.download_drive() in_1 = eddl.Input([3, 584, 584]) in_2 = eddl.Input([1, 584, 584]) layer = eddl.Concat([in_1, in_2]) layer = eddl.RandomCropScale(layer, [0.9, 1.0]) layer = eddl.CenteredCrop(layer, [512, 512]) img = eddl.Select(layer, ["0:3"]) mask = eddl.Select(layer, ["3"]) # DA net danet = eddl.Model([in_1, in_2], []) eddl.build(danet) if args.gpu: eddl.toGPU(danet, mem="low_mem") eddl.summary(danet) # SegNet in_ = eddl.Input([3, 512, 512]) out = eddl.Sigmoid(UNetWithPadding(in_)) segnet = eddl.Model([in_], [out]) eddl.build( segnet, eddl.adam(0.00001), # Optimizer ["mse"], # Losses ["mse"], # Metrics eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem) ) eddl.summary(segnet) print("Reading training data") # x_train_f = Tensor.fromarray(np.load("drive_trX.npy").astype(np.float32)) x_train_f = Tensor.load("drive_trX.bin") x_train = x_train_f.permute([0, 3, 1, 2]) x_train.info() x_train.div_(255.0) print("Reading test data") # y_train = Tensor.fromarray(np.load("drive_trY.npy").astype(np.float32)) y_train = Tensor.load("drive_trY.bin") y_train.info() y_train.reshape_([20, 1, 584, 584]) y_train.div_(255.0) xbatch = Tensor([args.batch_size, 3, 584, 584]) ybatch = Tensor([args.batch_size, 1, 584, 584]) print("Starting training") for i in range(args.epochs): print("\nEpoch %d/%d" % (i + 1, args.epochs)) eddl.reset_loss(segnet) for j in range(args.num_batches): eddl.next_batch([x_train, y_train], [xbatch, ybatch]) # DA net eddl.forward(danet, [xbatch, ybatch]) xbatch_da = eddl.getOutput(img) ybatch_da = eddl.getOutput(mask) # SegNet eddl.train_batch(segnet, [xbatch_da], [ybatch_da]) eddl.print_loss(segnet, j) if i == args.epochs - 1: yout = eddl.getOutput(out).select(["0"]) yout.save("./out_%d.jpg" % j) print() print("All done")