def test_duplicated_data_in_fit_transform(self): X = np.random.randn(100, 2) d = DataInMemory([X, X]) tica = api.tica(data=d, lag=1, dim=1) out1 = tica.get_output() out2 = tica.fit_transform([X, X]) np.testing.assert_array_almost_equal(out1, out2)
def perform(chunksize, stride): try: transformed_output = tica.get_output(chunk=chunksize, stride=stride) tica.write_to_hdf5(out, group=group, chunksize=chunksize, stride=stride) import h5py with h5py.File(out) as f: assert len(f[group]) == len(data) for (itraj, actual), desired in zip(f[group].items(), transformed_output): np.testing.assert_equal(actual, desired, err_msg='failed for cs=%s, stride=%s' %(chunksize, stride)) finally: os.remove(out)