def tpt(T, A, B, mu=None, qminus=None, qplus=None, rate_matrix=False): r""" Computes the A->B reactive flux using transition path theory (TPT) Parameters ---------- T : (M, M) ndarray or scipy.sparse matrix Transition matrix (default) or Rate matrix (if rate_matrix=True) A : array_like List of integer state labels for set A B : array_like List of integer state labels for set B mu : (M,) ndarray (optional) Stationary vector qminus : (M,) ndarray (optional) Backward committor for A->B reaction qplus : (M,) ndarray (optional) Forward committor for A-> B reaction rate_matrix = False : boolean By default (False), T is a transition matrix. If set to True, T is a rate matrix. Returns ------- tpt: pyemma.msm.flux.ReactiveFlux object A python object containing the reactive A->B flux network and several additional quantities, such as stationary probability, committors and set definitions. Notes ----- The central object used in transition path theory is the forward and backward comittor function. TPT (originally introduced in [1]) for continous systems has a discrete version outlined in [2]. Here, we use the transition matrix formulation described in [3]. See also -------- pyemma.msm.analysis.committor, ReactiveFlux References ---------- .. [1] W. E and E. Vanden-Eijnden. Towards a theory of transition paths. J. Stat. Phys. 123: 503-523 (2006) .. [2] P. Metzner, C. Schuette and E. Vanden-Eijnden. Transition Path Theory for Markov Jump Processes. Multiscale Model Simul 7: 1192-1219 (2009) .. [3] F. Noe, Ch. Schuette, E. Vanden-Eijnden, L. Reich and T. Weikl: Constructing the Full Ensemble of Folding Pathways from Short Off-Equilibrium Simulations. Proc. Natl. Acad. Sci. USA, 106, 19011-19016 (2009) """ import pyemma.msm.analysis as msmana if len(A) == 0 or len(B) == 0: raise ValueError('set A or B is empty') n = T.shape[0] if len(A) > n or len(B) > n or max(A) > n or max(B) > n: raise ValueError('set A or B defines more states, than given transition matrix.') if (rate_matrix is False) and (not msmana.is_transition_matrix(T)): raise ValueError('given matrix T is not a transition matrix') if (rate_matrix is True): raise NotImplementedError('TPT with rate matrix is not yet implemented - But it is very simple, so feel free to do it.') # we can compute the following properties from either dense or sparse T # stationary dist if mu is None: mu = msmana.stationary_distribution(T) # forward committor if qplus is None: qplus = msmana.committor(T, A, B, forward=True) # backward committor if qminus is None: if msmana.is_reversible(T, mu=mu): qminus = 1.0-qplus else: qminus = msmana.committor(T, A, B, forward=False, mu=mu) # gross flux grossflux = flux_matrix(T, mu, qminus, qplus, netflux = False) # net flux netflux = to_netflux(grossflux) # construct flux object from reactive_flux import ReactiveFlux F = ReactiveFlux(A, B, netflux, mu=mu, qminus=qminus, qplus=qplus, gross_flux=grossflux) # done return F
def test_backward_comittor(self): P = self.bdc.transition_matrix() un = committor(P, [0, 1], [8, 9], forward=False) u = self.bdc.committor_backward(1, 8) assert_allclose(un, u)
def test_backward_comittor(self): P = self.bdc.transition_matrix_sparse() un = committor(P, range(10), range(90, 100), forward=False) u = self.bdc.committor_backward(9, 90) assert_allclose(un, u)
def tpt(T, A, B, mu=None, qminus=None, qplus=None, rate_matrix=False): r""" Computes the A->B reactive flux using transition path theory (TPT) Parameters ---------- T : (M, M) ndarray or scipy.sparse matrix Transition matrix (default) or Rate matrix (if rate_matrix=True) A : array_like List of integer state labels for set A B : array_like List of integer state labels for set B mu : (M,) ndarray (optional) Stationary vector qminus : (M,) ndarray (optional) Backward committor for A->B reaction qplus : (M,) ndarray (optional) Forward committor for A-> B reaction rate_matrix = False : boolean By default (False), T is a transition matrix. If set to True, T is a rate matrix. Returns ------- tpt: pyemma.msm.flux.ReactiveFlux object A python object containing the reactive A->B flux network and several additional quantities, such as stationary probability, committors and set definitions. Notes ----- The central object used in transition path theory is the forward and backward comittor function. TPT (originally introduced in [1]) for continous systems has a discrete version outlined in [2]. Here, we use the transition matrix formulation described in [3]. See also -------- pyemma.msm.analysis.committor, ReactiveFlux References ---------- .. [1] W. E and E. Vanden-Eijnden. Towards a theory of transition paths. J. Stat. Phys. 123: 503-523 (2006) .. [2] P. Metzner, C. Schuette and E. Vanden-Eijnden. Transition Path Theory for Markov Jump Processes. Multiscale Model Simul 7: 1192-1219 (2009) .. [3] F. Noe, Ch. Schuette, E. Vanden-Eijnden, L. Reich and T. Weikl: Constructing the Full Ensemble of Folding Pathways from Short Off-Equilibrium Simulations. Proc. Natl. Acad. Sci. USA, 106, 19011-19016 (2009) """ import pyemma.msm.analysis as msmana if len(A) == 0 or len(B) == 0: raise ValueError('set A or B is empty') n = T.shape[0] if len(A) > n or len(B) > n or max(A) > n or max(B) > n: raise ValueError('set A or B defines more states, than given transition matrix.') if (rate_matrix is False) and (not msmana.is_transition_matrix(T)): raise ValueError('given matrix T is not a transition matrix') if (rate_matrix is True): raise NotImplementedError( 'TPT with rate matrix is not yet implemented - But it is very simple, so feel free to do it.') # we can compute the following properties from either dense or sparse T # stationary dist if mu is None: mu = msmana.stationary_distribution(T) # forward committor if qplus is None: qplus = msmana.committor(T, A, B, forward=True) # backward committor if qminus is None: if msmana.is_reversible(T, mu=mu): qminus = 1.0 - qplus else: qminus = msmana.committor(T, A, B, forward=False, mu=mu) # gross flux grossflux = flux_matrix(T, mu, qminus, qplus, netflux=False) # net flux netflux = to_netflux(grossflux) # construct flux object from reactive_flux import ReactiveFlux F = ReactiveFlux(A, B, netflux, mu=mu, qminus=qminus, qplus=qplus, gross_flux=grossflux) # done return F
def test_forward_comittor(self): P=self.bdc.transition_matrix_sparse() un=committor(P, range(10), range(90,100), forward=True) u=self.bdc.committor_forward(9, 90) self.assertTrue(np.allclose(un, u))
def test_forward_comittor(self): P=self.bdc.transition_matrix() un=committor(P, [0, 1], [8, 9], forward=True) u=self.bdc.committor_forward(1, 8) self.assertTrue(np.allclose(un, u))