コード例 #1
0
    def sample_indexes_by_cluster(self, clusters, nsample, replace=True):
        """Samples trajectory/time indexes according to the given sequence of states.

        Parameters
        ----------
        clusters : iterable of integers
            It contains the cluster indexes to be sampled

        nsample : int
            Number of samples per cluster. If replace = False, the number of returned samples per cluster could be smaller
            if less than nsample indexes are available for a cluster.

        replace : boolean, optional
            Whether the sample is with or without replacement

        Returns
        -------
        indexes : list of ndarray( (N, 2) )
            List of the sampled indices by cluster.
            Each element is an index array with a number of rows equal to N=len(sequence), with rows consisting of a
            tuple (i, t), where i is the index of the trajectory and t is the time index within the trajectory.
        """

        # Check if the catalogue (index_states)
        if len(self._index_states) == 0: # has never been run
            self._index_states = index_states(self.dtrajs)

        return sample_indexes_by_state(self._index_states[clusters], nsample, replace=replace)
コード例 #2
0
 def test_sample_by_state_replace(self):
     dtraj = [0, 1, 2, 3, 2, 1, 0]
     idx = dt.index_states(dtraj)
     sidx = dt.sample_indexes_by_state(idx, 5)
     for i in range(4):
         assert (sidx[i].shape[0] == 5)
         for t in range(sidx[i].shape[0]):
             assert (dtraj[sidx[i][t, 1]] == i)
コード例 #3
0
 def test_sample_by_state_replace_subset(self):
     dtraj = [0, 1, 2, 3, 2, 1, 0]
     idx = dt.index_states(dtraj)
     subset = [1, 2]
     sidx = dt.sample_indexes_by_state(idx, 5, subset=subset)
     for i in range(len(subset)):
         assert (sidx[i].shape[0] == 5)
         for t in range(sidx[i].shape[0]):
             assert (dtraj[sidx[i][t, 1]] == subset[i])
コード例 #4
0
 def test_onetraj_sub(self):
     dtraj = [0, 1, 2, 3, 2, 1, 0]
     # should be a ValueError because this is not a subset
     res = dt.index_states(dtraj, subset=[2, 3])
     expected = [np.array([[0, 2], [0, 4]]), np.array([[0, 3]])]
     assert (len(res) == len(expected))
     for i in range(len(res)):
         assert (res[i].shape == expected[i].shape)
         assert (np.alltrue(res[i] == expected[i]))
コード例 #5
0
 def test_sample_by_sequence(self):
     dtraj = [0, 1, 2, 3, 2, 1, 0]
     idx = dt.index_states(dtraj)
     seq = [0, 1, 1, 1, 0, 0, 0, 0, 1, 1]
     sidx = dt.sample_indexes_by_sequence(idx, seq)
     assert (np.alltrue(sidx.shape == (len(seq), 2)))
     for t in range(sidx.shape[0]):
         assert (sidx[t, 0] == 0)  # did we pick the right traj?
         assert (dtraj[sidx[t,
                            1]] == seq[t])  # did we pick the right states?
コード例 #6
0
 def active_state_indexes(self):
     """
     Ensures that the connected states are indexed and returns the indices
     """
     self._check_is_estimated()
     if not hasattr(self, '_active_state_indexes'):
         from pyerna.util.discrete_trajectories import index_states
         self._active_state_indexes = index_states(
             self.discrete_trajectories_active)
     return self._active_state_indexes
コード例 #7
0
    def observable_state_indexes(self):
        """
        Ensures that the observable states are indexed and returns the indices
        """
        try:  # if we have this attribute, return it
            return self._observable_state_indexes
        except AttributeError:  # didn't exist? then create it.
            import pyerna.util.discrete_trajectories as dt

            self._observable_state_indexes = dt.index_states(
                self.discrete_trajectories_obs)
            return self._observable_state_indexes
コード例 #8
0
 def test_twotraj(self):
     dtrajs = [[0, 1, 2, 3, 2, 1, 0], [3, 4, 5]]
     # should be a ValueError because this is not a subset
     res = dt.index_states(dtrajs)
     expected = [
         np.array([[0, 0], [0, 6]]),
         np.array([[0, 1], [0, 5]]),
         np.array([[0, 2], [0, 4]]),
         np.array([[0, 3], [1, 0]]),
         np.array([[1, 1]]),
         np.array([[1, 2]])
     ]
     assert (len(res) == len(expected))
     for i in range(len(res)):
         assert (res[i].shape == expected[i].shape)
         assert (np.alltrue(res[i] == expected[i]))
コード例 #9
0
    def index_clusters(self):
        """Returns trajectory/time indexes for all the clusters

        Returns
        -------
        indexes : list of ndarray( (N_i, 2) )
            For each state, all trajectory and time indexes where this cluster occurs.
            Each matrix has a number of rows equal to the number of occurrences of the corresponding state,
            with rows consisting of a tuple (i, t), where i is the index of the trajectory and t is the time index
            within the trajectory.
        """
        if len(self._dtrajs) == 0:  # nothing assigned yet, doing that now
            self._dtrajs = self.assign()

        if len(self._index_states) == 0: # has never been run
            self._index_states = index_states(self._dtrajs)

        return self._index_states
コード例 #10
0
 def test_big(self):
     import pyerna.datasets
     dtraj = pyerna.datasets.load_2well_discrete().dtraj_T100K_dt10
     # just run these to see if there's any exception
     dt.index_states(dtraj)
コード例 #11
0
 def test_subset_error(self):
     dtraj = [0, 1, 2, 3, 2, 1, 0]
     # should be a ValueError because this is not a subset
     with self.assertRaises(ValueError):
         dt.index_states(dtraj, subset=[3, 4, 5])