コード例 #1
0
 def estimate_fao56_daily(self, day_of_year, temp_c, temp_c_min, temp_c_max,
                          tdew, elevation, latitude, rh, wind_m_s,
                          atmos_pres):
     """ Estimate fao56 from weather """
     sha = pyeto.sunset_hour_angle(pyeto.deg2rad(latitude),
                                   pyeto.sol_dec(day_of_year))
     daylight_hours = pyeto.daylight_hours(sha)
     sunshine_hours = 0.8 * daylight_hours
     ird = pyeto.inv_rel_dist_earth_sun(day_of_year)
     et_rad = pyeto.et_rad(pyeto.deg2rad(latitude),
                           pyeto.sol_dec(day_of_year), sha, ird)
     sol_rad = pyeto.sol_rad_from_sun_hours(daylight_hours, sunshine_hours,
                                            et_rad)
     net_in_sol_rad = pyeto.net_in_sol_rad(sol_rad=sol_rad, albedo=0.23)
     cs_rad = pyeto.cs_rad(elevation, et_rad)
     avp = pyeto.avp_from_tdew(tdew)
     net_out_lw_rad = pyeto.net_out_lw_rad(
         pyeto.convert.celsius2kelvin(temp_c_min),
         pyeto.convert.celsius2kelvin(temp_c_max), sol_rad, cs_rad, avp)
     net_rad = pyeto.net_rad(net_in_sol_rad, net_out_lw_rad)
     eto = pyeto.fao56_penman_monteith(
         net_rad=net_rad,
         t=pyeto.convert.celsius2kelvin(temp_c),
         ws=wind_m_s,
         svp=pyeto.svp_from_t(temp_c),
         avp=avp,
         delta_svp=pyeto.delta_svp(temp_c),
         psy=pyeto.psy_const(atmos_pres))
     return eto
コード例 #2
0
def get_evap_i(lat, elev, wind, srad, tmin, tmax, tavg, month):
    if month == 1:
        J = 15
    else:
        J = 15 + (month - 1) * 30

    latitude = pyeto.deg2rad(lat)
    atmosphericVapourPressure = pyeto.avp_from_tmin(tmin)
    saturationVapourPressure = pyeto.svp_from_t(tavg)
    ird = pyeto.inv_rel_dist_earth_sun(J)
    solarDeclination = pyeto.sol_dec(J)
    sha = [pyeto.sunset_hour_angle(l, solarDeclination) for l in latitude]
    extraterrestrialRad = [
        pyeto.et_rad(x, solarDeclination, y, ird)
        for x, y in zip(latitude, sha)
    ]
    clearSkyRad = pyeto.cs_rad(elev, extraterrestrialRad)
    netInSolRadnet = pyeto.net_in_sol_rad(srad * 0.001, albedo=0.23)
    netOutSolRadnet = pyeto.net_out_lw_rad(tmin, tmax, srad * 0.001,
                                           clearSkyRad,
                                           atmosphericVapourPressure)
    netRadiation = pyeto.net_rad(netInSolRadnet, netOutSolRadnet)
    tempKelvin = pyeto.celsius2kelvin(tavg)
    windSpeed2m = pyeto.wind_speed_2m(wind, 10)
    slopeSvp = pyeto.delta_svp(tavg)
    atmPressure = pyeto.atm_pressure(elev)
    psyConstant = pyeto.psy_const(atmPressure)

    return pyeto.fao56_penman_monteith(netRadiation,
                                       tempKelvin,
                                       windSpeed2m,
                                       saturationVapourPressure,
                                       atmosphericVapourPressure,
                                       slopeSvp,
                                       psyConstant,
                                       shf=0.0)
            et_rad=pyeto.et_rad(lat, sol_dec, sha, ird)
            sol_rad=pyeto.sol_rad_from_sun_hours(daylight_hours,sunshine_hours,et_rad)
            ni_sw_rad=pyeto.net_in_sol_rad(sol_rad, albedo=0.23)
            cs_rad=pyeto.cs_rad(altitude, et_rad)
            svp_tmin=pyeto.svp_from_t(tmin)
            svp_tmax=pyeto.svp_from_t(tmax)
            avp=pyeto.avp_from_rhmean(svp_tmin, svp_tmax, rh_mean)
            no_lw_rad=pyeto.net_out_lw_rad(tmink, tmaxk, sol_rad, cs_rad, avp)
            net_rad=pyeto.net_rad(ni_sw_rad, no_lw_rad)
            #Presion de vapor de saturacion
            svp=pyeto.svp_from_t(t)
            #Delta presion de vapor de saturacion
            delta_svp=pyeto.delta_svp(t)
            #Constante psicrométrica
            atmos_pres=pyeto.atm_pressure(altitude)
            psy=pyeto.psy_const(atmos_pres)
            #Calculo ETo Fao Penman Monteith
            ETo=pyeto.fao56_penman_monteith(net_rad, tk, ws, svp, avp, delta_svp, psy, shf=0.0)
            ETO.append(ETo)        
            if day>=365:
                if Ano%4==0:
                    Ano=Ano+1
                else:
                    day=1
                    if Ano%4!=1:
                        Ano=Ano+1
    ETO=pd.DataFrame.from_dict(ETO)
    pd.DataFrame.to_csv(ETO, esta[i]+"_ETo"+".csv", index=False, header=False)
#Escribo todos los datos en el archivo

               
コード例 #4
0
def get_data_from_WU():

    ###array to store the reports
    wu_weather_reports = []

    ##  today and last 6 days definition
    day1 = now - datetime.timedelta(days=6)
    day2 = now - datetime.timedelta(days=5)
    day3 = now - datetime.timedelta(days=4)
    day4 = now - datetime.timedelta(days=3)
    day5 = now - datetime.timedelta(days=2)
    day6 = now - datetime.timedelta(days=1)
    day7 = now

    #### convert dates to WU required format
    days = {
        'day1': day1.strftime('%Y%m%d'),
        'day2': day2.strftime('%Y%m%d'),
        'day3': day3.strftime('%Y%m%d'),
        'day4': day4.strftime('%Y%m%d'),
        'day5': day5.strftime('%Y%m%d'),
        'day6': day6.strftime('%Y%m%d'),
        'day7': day7.strftime('%Y%m%d')
    }

    ### make API wather hisotry call for each day
    for day in days:
        url = 'http://api.wunderground.com/api/7c2ab99a0ccee978/history_{0}/q/95316.json'.format(
            days[day])
        headers = {'content-type': 'application/JSON; charset=utf8'}
        response = requests.get(url, headers=headers)

        data = json.loads(response.text)

        #ETo calculation for the day using FAO-56 Penman-Monteith method
        lat = pyeto.deg2rad(37.585652)
        altitude = 38

        julian_day = datetime.datetime.strptime(days.get(day),
                                                '%Y%m%d').timetuple().tm_yday
        sol_dec = pyeto.sol_dec(julian_day)
        sha = pyeto.sunset_hour_angle(lat, sol_dec)
        ird = pyeto.inv_rel_dist_earth_sun(julian_day)

        ### net radiation calculator
        net_rad = pyeto.et_rad(lat, sol_dec, sha, ird)

        temp_c = float(data["history"]["observations"][1]["tempm"])
        temp_k = float(data["history"]["observations"][1]["tempi"])
        humidity = float(data["history"]["observations"][1]["hum"])
        dew_point = float(data["history"]["observations"][1]["dewptm"])
        ws = float(data["history"]["observations"][1]["wspdm"])

        #actual and saturated vapour pressure in kPH
        svp = pyeto.svp_from_t(temp_c)
        avp = pyeto.avp_from_tdew(dew_point)
        delta_svp = pyeto.delta_svp(temp_c)

        atm_pressure = pyeto.atm_pressure(altitude)
        psy = pyeto.psy_const(atm_pressure)

        #### the ETo plugin retun results in mm, it was converted to inched
        ETo_in_mm = pyeto.fao56_penman_monteith(net_rad,
                                                temp_k,
                                                ws,
                                                svp,
                                                avp,
                                                delta_svp,
                                                psy,
                                                shf=0.0)
        ETo = ETo_in_mm * 0.039370

        ## insert eto value to day weather report
        data["history"]["observations"][1].update(
            {"ETo": "{0:.2f}".format(ETo)})

        ###add report to report collector array
        wu_weather_reports.append(data["history"]["observations"][1])

    #return all reports
    return wu_weather_reports
コード例 #5
0
    def calculate_precipitation(self, d):
        if "rain" in d:
            self.rain_day = float(d["rain"])
        if "snow" in d:
            self.snow_day = float(d["snow"])

    # def calculate_ev_fao56_factor(self, d):
        dt = d['dt']
        factor = 0.0
        if dt > d['sunrise']:
            if dt < d['sunset']:
                factor = min(float(dt - d['sunrise'])/3600.0, 1.0)
            else:
                if dt > d['sunset']:
                    factor = (dt - d['sunrise'])/3600.0
                    if factor < 1.0:
                        factor = 1.0 - factor
            return factor

    #def estimate_fao56_hourly(self, day_of_year, temp_c, tdew, elevation, latitude, rh, wind_m_s, atmos_pres):
        """ Estimate fao56 from weather """
        sha = pyeto.sunset_hour_angle(pyeto.deg2rad(latitude),
                                      pyeto.sol_dec(day_of_year))
        daylight_hours = pyeto.daylight_hours(sha)
        sunshine_hours = 0.8 * daylight_hours
        ird = pyeto.inv_rel_dist_earth_sun(day_of_year)
        et_rad = pyeto.et_rad(pyeto.deg2rad(latitude),
                              pyeto.sol_dec(day_of_year), sha, ird)
        sol_rad = pyeto.sol_rad_from_sun_hours(daylight_hours, sunshine_hours,
                                               et_rad)
        net_in_sol_rad = pyeto.net_in_sol_rad(sol_rad=sol_rad, albedo=0.23)
        cs_rad = pyeto.cs_rad(elevation, et_rad)
        avp = pyeto.avp_from_tdew(tdew)
        #not sure if I trust this net_out_lw_rad calculation here!
        net_out_lw_rad = pyeto.net_out_lw_rad(temp_c-1, temp_c, sol_rad,
                                              cs_rad, avp)
        net_rad = pyeto.net_rad(net_in_sol_rad, net_out_lw_rad)
        eto = pyeto.fao56_penman_monteith(
            net_rad=net_rad,
            t=pyeto.convert.celsius2kelvin(temp_c),
            ws=wind_m_s,
            svp=pyeto.svp_from_t(temp_c),
            avp=avp,
            delta_svp=pyeto.delta_svp(temp_c),
            psy=pyeto.psy_const(atmos_pres))
        return eto

    #def calculate_fao56_hourly(self, d):
        day_of_year = datetime.datetime.now().timetuple().tm_yday
        T_hr = d['temp']
        t_dew = float(d["dew_point"])
        pressure = d['pressure']
        RH_hr = d['humidity']
        u_2 = d['wind_speed']
        #print("CALCULATE_FAO56:")
        #print("T_hr: {}".format(T_hr))
        #print("t_dew: {}".format(t_dew))
        #print("RH_hr: {}".format(RH_hr))
        #print("u_2: {}".format(u_2))
        #print("pressure: {}".format(pressure))
        fao56 = self.estimate_fao56_hourly(day_of_year,
                                    T_hr,
                                    t_dew,
                                    self.elevation,
                                    LAT,
                                    RH_hr,
                                    u_2,
                                    pressure)

        return fao56
    def exec(self):

        log.info('[START] {}'.format("exec"))

        try:

            if (platform.system() == 'Windows'):
                # 옵션 설정
                sysOpt = {
                    # 시작/종료 시간
                    'srtDate': '2020-09-01',
                    'endDate': '2020-09-03'

                    # 경도 최소/최대/간격
                    ,
                    'lonMin': 0,
                    'lonMax': 360,
                    'lonInv': 0.5

                    # 위도 최소/최대/간격
                    ,
                    'latMin': -90,
                    'latMax': 90,
                    'latInv': 0.5
                }
            else:
                # 옵션 설정
                sysOpt = {
                    # 시작/종료 시간
                    # 'srtDate': globalVar['srtDate']
                    # , 'endDate': globalVar['endDate']
                }

            # globalVar['outPath'] = 'F:/Global Temp/aski'

            modelList = ['MRI-ESM2-0']
            for i, modelInfo in enumerate(modelList):
                log.info("[CHECK] modelInfo : {}".format(modelInfo))

                inpFile = '{}/{}/{} ssp585 2015-2100_*.nc'.format(
                    globalVar['inpPath'], serviceName, modelInfo)
                fileList = sorted(glob.glob(inpFile))
                log.info("[CHECK] fileList : {}".format(fileList))

                dsData = xr.open_mfdataset(fileList)
                dsData = dsData.sel(lon=slice(120, 150),
                                    time=slice('2015-01', '2015-12'))
                # dsData = dsData.sel(time = slice('2015-01', '2020-12'))

                # 월별 시간 변환
                dsData['time'] = pd.to_datetime(pd.to_datetime(
                    dsData['time'].values).strftime("%Y-%m"),
                                                format='%Y-%m')

                # 단위 설정
                # 켈빈 to 섭씨
                dsData['tasCel'] = dsData['tas'] - 273.15
                dsData['tasminCel'] = dsData['tasmin'] - 273.15
                dsData['tasmaxCel'] = dsData['tasmax'] - 273.15

                dsData['tasminCel'].attrs['units'] = 'degC'
                dsData['tasmaxCel'].attrs['units'] = 'degC'
                dsData['tasCel'].attrs['units'] = 'degC'

                # 단위 환산을 위한 매월 마지막 날 계산
                lon1D = dsData['lon'].values
                lat1D = dsData['lat'].values
                time1D = dsData['time'].values

                timeEndMonth = []
                timeYear = dsData['time.year'].values
                timeMonth = dsData['time.month'].values

                for i in range(0, len(timeYear)):
                    timeEndMonth.append(
                        calendar.monthrange(timeYear[i], timeMonth[i])[1])

                latRad1D = pyeto.deg2rad(dsData['lat'])
                dayOfYear1D = dsData['time.dayofyear']

                latRad3D = np.tile(
                    np.transpose(np.tile(latRad1D, (len(lon1D), 1))),
                    (len(time1D), 1, 1))
                dayOfYear3D = np.transpose(
                    np.tile(dayOfYear1D, (len(lon1D), len(lat1D), 1)))

                timeEndMonth3D = np.transpose(
                    np.tile(timeEndMonth, (len(lon1D), len(lat1D), 1)))

                tmpData = xr.Dataset(
                    {
                        'timeEndMonth':
                        (('time', 'lat', 'lon'), (timeEndMonth3D).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'latRad': (('time', 'lat', 'lon'), (latRad3D).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'dayOfYear':
                        (('time', 'lat', 'lon'), (dayOfYear3D).reshape(
                            len(time1D), len(lat1D), len(lon1D)))
                    },
                    coords={
                        'lat': lat1D,
                        'lon': lon1D,
                        'time': time1D
                    })

                # ********************************************************************************************
                # FAO-56 Penman-Monteith 방법
                # ********************************************************************************************
                # https://pyeto.readthedocs.io/en/latest/fao56_penman_monteith.html 매뉴얼 참조
                # 1 W/m2 = 1 J/m2를 기준으로 MJ/day 변환
                dsData['rsdsMJ'] = dsData['rsds'] * 86400 / (10**6)

                dsData['tasKel'] = dsData['tas']
                dsData['tasminKel'] = dsData['tasmin']
                dsData['tasmaxKel'] = dsData['tasmax']
                dsData['tasKel'].attrs['units'] = 'degK'
                dsData['tasminKel'].attrs['units'] = 'degK'
                dsData['tasmaxKel'].attrs['units'] = 'degK'

                # 섭씨 to 켈빈
                # dsData['tasKel'] = dsData['tas'] + 273.15
                # dsData['tasminKel'] = dsData['tasmin'] + 273.15
                # dsData['tasmaxKel'] = dsData['tasmax'] + 273.15

                dsData['svp'] = svp_from_t(dsData['tasCel'])
                dsData['svpMax'] = svp_from_t(dsData['tasmaxCel'])
                dsData['svpMin'] = svp_from_t(dsData['tasminCel'])

                tmpData['solDec'] = sol_dec(tmpData['dayOfYear'])
                tmpData['sha'] = sunset_hour_angle(tmpData['latRad'],
                                                   tmpData['solDec'])
                tmpData['dayLightHour'] = daylight_hours(tmpData['latRad'])
                tmpData['ird'] = inv_rel_dist_earth_sun(tmpData['dayOfYear'])
                tmpData['etRad'] = et_rad(tmpData['latRad'], tmpData['solDec'],
                                          tmpData['sha'], tmpData['ird'])
                tmpData['csRad'] = pyeto.cs_rad(altitude=1.5,
                                                et_rad=tmpData['etRad'])
                dsData['deltaSvp'] = delta_svp(dsData['tasCel'])

                # 대기 온도 1.5 m 가정
                psy = pyeto.psy_const(atmos_pres=pyeto.atm_pressure(
                    altitude=15))

                dsData['avp'] = pyeto.avp_from_rhmin_rhmax(
                    dsData['svpMax'], dsData['svpMin'], dsData['hurs'].min(),
                    dsData['hurs'].max())
                niSwRad = pyeto.net_in_sol_rad(dsData['rsdsMJ'], albedo=0.23)
                niLwRad = net_out_lw_rad(dsData['tasminKel'],
                                         dsData['tasmaxKel'], dsData['rsdsMJ'],
                                         tmpData['csRad'], dsData['avp'])
                dsData['net_rad'] = pyeto.net_rad(ni_sw_rad=niSwRad,
                                                  no_lw_rad=niLwRad)

                faoRes = pyeto.fao56_penman_monteith(dsData['net_rad'],
                                                     dsData['tasKel'],
                                                     dsData['sfcWind'],
                                                     dsData['svp'],
                                                     dsData['avp'],
                                                     dsData['deltaSvp'],
                                                     psy,
                                                     shf=0)

                # ********************************************************************************************
                # Hargreaves 방법
                # ********************************************************************************************
                # https://xclim.readthedocs.io/en/stable/indicators_api.html 매뉴얼 참조
                harRes = xclim.indices.potential_evapotranspiration(
                    dsData['tasminCel'],
                    dsData['tasmaxCel'],
                    dsData['tasCel'],
                    dsData['lat'],
                    method='hargreaves85')

                # 1 kg/m2/s = 86400 mm/day를 기준으로 mm/month 변환
                harResL1 = harRes * 86400.0 * tmpData['timeEndMonth']

                # https://pyeto.readthedocs.io/en/latest/thornthwaite.html 매뉴얼 참조
                # harRes = pyeto.hargreaves(dsData['tasminCel'], dsData['tasmaxCel'], dsData['tasCel'], tmpData['etRad'])
                # harResL1 = harRes

                # ********************************************************************************************
                # Thornthwaite 방법
                # ********************************************************************************************
                # https://xclim.readthedocs.io/en/stable/indicators_api.html 매뉴얼 참조
                thwRes = xclim.indices.potential_evapotranspiration(
                    dsData['tasminCel'],
                    dsData['tasmaxCel'],
                    dsData['tasCel'],
                    dsData['lat'],
                    method='thornthwaite48')

                # 1 kg/m2/s = 86400 mm/day를 기준으로 mm/month 변환
                thwResL1 = thwRes * 86400.0 * tmpData['timeEndMonth']

                # https://pyeto.readthedocs.io/en/latest/thornthwaite.html 매뉴얼 참조
                # thwRes = pyeto.thornthwaite(dsData['tasCel'], tmpData['dayLightHour'])
                # thwResL1 = thwResL1

                # ********************************************************************************************
                # 데이터 병합
                # ********************************************************************************************
                data = xr.Dataset(
                    {
                        'hargreaves':
                        (('time', 'lat', 'lon'), (harResL1.values).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'thornthwaite':
                        (('time', 'lat', 'lon'), (thwResL1.values).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'penman-monteith':
                        (('time', 'lat', 'lon'), (faoRes.values).reshape(
                            len(time1D), len(lat1D), len(lon1D)))
                    },
                    coords={
                        'lat': lat1D,
                        'lon': lon1D,
                        'time': time1D
                    })

                dataL1 = xr.merge([data, dsData])

                # # NetCDF 파일 저장
                saveFile = '{}/{}/{}_eto.nc'.format(globalVar['outPath'],
                                                    serviceName, modelInfo)
                os.makedirs(os.path.dirname(saveFile), exist_ok=True)
                dataL1.to_netcdf(saveFile)
                log.info('[CHECK] saveFile : {}'.format(saveFile))

        except Exception as e:
            log.error("Exception : {}".format(e))
            raise e
        finally:
            log.info('[END] {}'.format("exec"))
コード例 #7
0
# this data should be from nws.
import pyeto
latitude_deg = 38.01
latitude = pyeto.deg2rad(latitude_deg)
day_of_year = 206
tmin = 37
tmax = 53
coastal = True
altitude = 147
rh_min = 13
rh_max = 88
ws = 1.3

tmean = pyeto.daily_mean_t(tmin, tmax)
atmos_pres = pyeto.atm_pressure(altitude)
psy = pyeto.psy_const(atmos_pres)

# Humidity
svp_tmin = pyeto.svp_from_t(tmin)
svp_tmax = pyeto.svp_from_t(tmax)
delta_svp = pyeto.delta_svp(tmean)
svp = pyeto.mean_svp(tmin, tmax)
avp = pyeto.avp_from_rhmin_rhmax(svp_tmin, svp_tmax, rh_min, rh_max)

# Radiation
sol_dec = pyeto.sol_dec(day_of_year)
sha = pyeto.sunset_hour_angle(latitude, sol_dec)
ird = pyeto.inv_rel_dist_earth_sun(day_of_year)
et_rad = pyeto.et_rad(latitude, sol_dec, sha, ird)
cs_rad = pyeto.cs_rad(altitude, et_rad)
sol_rad = pyeto.sol_rad_from_t(et_rad, cs_rad, tmin, tmax, coastal)
コード例 #8
0
def get_data_from_WU():

    ###array to store the reports
    wu_weather_reports = []

    ##  today and last 6 days definition
    day1 = now - datetime.timedelta(days=6)
    day2 = now - datetime.timedelta(days=5)
    day3 = now - datetime.timedelta(days=4)
    day4 = now - datetime.timedelta(days=3)
    day5 = now - datetime.timedelta(days=2)
    day6 = now - datetime.timedelta(days=1)
    day7 = now

    #### convert dates to WU required format
    days = {
    'day1': day1.strftime('%Y%m%d'),
    'day2': day2.strftime('%Y%m%d'),
    'day3': day3.strftime('%Y%m%d'),
    'day4': day4.strftime('%Y%m%d'),
    'day5': day5.strftime('%Y%m%d'),
    'day6': day6.strftime('%Y%m%d'),
    'day7': day7.strftime('%Y%m%d')

    }

    ### make API wather hisotry call for each day
    for day in days:
        url = 'http://api.wunderground.com/api/7c2ab99a0ccee978/history_{0}/q/95316.json'.format(days[day])
        headers = {'content-type': 'application/JSON; charset=utf8'} 
        response = requests.get(url, headers=headers)

        data = json.loads(response.text)

        #ETo calculation for the day using FAO-56 Penman-Monteith method
        lat = pyeto.deg2rad(37.585652)
        altitude = 38

        julian_day = datetime.datetime.strptime(days.get(day), '%Y%m%d').timetuple().tm_yday
        sol_dec = pyeto.sol_dec(julian_day)
        sha = pyeto.sunset_hour_angle(lat, sol_dec)
        ird = pyeto.inv_rel_dist_earth_sun(julian_day)

        ### net radiation calculator
        net_rad = pyeto.et_rad(lat, sol_dec, sha, ird) 

        temp_c = float(data["history"]["observations"][1]["tempm"])
        temp_k = float(data["history"]["observations"][1]["tempi"])
        humidity = float(data["history"]["observations"][1]["hum"])
        dew_point = float(data["history"]["observations"][1]["dewptm"])
        ws = float(data["history"]["observations"][1]["wspdm"])

        #actual and saturated vapour pressure in kPH
        svp = pyeto.svp_from_t(temp_c)
        avp = pyeto.avp_from_tdew(dew_point)
        delta_svp = pyeto.delta_svp(temp_c)

        atm_pressure = pyeto.atm_pressure(altitude)
        psy = pyeto.psy_const(atm_pressure)

        #### the ETo plugin retun results in mm, it was converted to inched
        ETo_in_mm = pyeto.fao56_penman_monteith(net_rad, temp_k, ws, svp, avp, delta_svp, psy, shf=0.0)
        ETo = ETo_in_mm * 0.039370

        ## insert eto value to day weather report
        data["history"]["observations"][1].update({"ETo": "{0:.2f}".format(ETo)})

        ###add report to report collector array
        wu_weather_reports.append(data["history"]["observations"][1])

    #return all reports
    return wu_weather_reports
コード例 #9
0
ファイル: test_fao.py プロジェクト: woodcrafty/PyETo
 def test_psy_const(self):
     # Test based on example 2, p.63 of FAO paper
     psy = pyeto.psy_const(81.8)
     self.assertAlmostEqual(psy, 0.054, 3)
コード例 #10
0
ファイル: test_fao.py プロジェクト: Macowe/PyETo
 def test_psy_const(self):
     # Test based on example 2, p.63 of FAO paper
     psy = pyeto.psy_const(81.8)
     self.assertAlmostEqual(psy, 0.054, 3)