コード例 #1
0
ファイル: lme_image.py プロジェクト: BIC-MNI/pyezminc
    
    # load CSV file
    data=load_csv(input_csv)
    # columns:
    # Subject,Visit,Filename,Age,Gender,Scale
    # 
    
    # setup R objects for performing linear modelling
    Subject = ro.FactorVector(data['Subject'])
    Visit   = ro.FactorVector(data['Visit'])
    Age     = ro.FloatVector(data['Age'])
    Gender  = ro.FactorVector(data['Gender'])
    Scale   = ro.FloatVector(data['Scale'])
    
    inp=pyezminc.parallel_input_iterator()
    out=pyezminc.parallel_output_iterator()

    
    # allocate R formula, saves time for interpreter
    fixed_effects = ro.Formula('Jacobian ~ I(Age^2) + Gender:I(Age^2) + Age + Gender:Age + Gender')
    random_effects = ro.Formula('~1|Subject')
    
    inp.open(data['Filename'],mask_file )
    out.open(["output_roi_Intercept.mnc","output_roi_Age2.mnc","output_roi_Gender_Age2.mnc","output_roi_Age.mnc","output_roi_Gender_Age.mnc","output_roi_Gender.mnc",
    "output_roi_Intercept_t.mnc","output_roi_Age2_t.mnc","output_roi_Gender_Age2_t.mnc","output_roi_Age_t.mnc","output_roi_Gender_Age_t.mnc","output_roi_Gender_t.mnc"
    ],mask_file)

    # allocate space for input
    jacobian=np.zeros(shape=[inp.dim()],dtype=np.float64,order='C')

    # allocate space for output
コード例 #2
0
        # probably model didn't converge
        pass

    return result


if __name__ == "__main__":

    max_jobs_queue = 100

    inp = pyezminc.parallel_input_iterator()

    inp.open(data['Filename'], mask_file)

    # setup output iterator
    out = pyezminc.parallel_output_iterator()

    out.open([
        "output_Intercept.mnc", "output_Age2.mnc", "output_Gender_Age2.mnc",
        "output_Age.mnc", "output_Gender_Age.mnc", "output_Gender.mnc",
        "output_Intercept_t.mnc", "output_Age2_t.mnc",
        "output_Gender_Age2_t.mnc", "output_Age_t.mnc",
        "output_Gender_Age_t.mnc", "output_Gender_t.mnc"
    ], mask_file)

    l = None

    # start iterators, not really needed
    inp.begin()
    out.begin()