コード例 #1
0
    def test_Inference(self):
        # ===== Distributions ===== #
        dist = Normal(0., 1.)
        mvn = Independent(Normal(torch.zeros(2), torch.ones(2)), 1)

        # ===== Define model ===== #
        linear = AffineProcess((f, g), (1., 0.25), dist, dist)
        model = LinearGaussianObservations(linear, scale=0.1)

        mv_linear = AffineProcess((fmvn, gmvn), (0.5, 0.25), mvn, mvn)
        mvnmodel = LinearGaussianObservations(mv_linear, torch.eye(2), scale=0.1)

        # ===== Test for multiple models ===== #
        priors = Exponential(1.), LogNormal(0., 1.)

        hidden1d = AffineProcess((f, g), priors, dist, dist)
        oned = LinearGaussianObservations(hidden1d, 1., scale=0.1)

        hidden2d = AffineProcess((fmvn, gmvn), priors, mvn, mvn)
        twod = LinearGaussianObservations(hidden2d, torch.eye(2), scale=0.1 * torch.ones(2))

        particles = 1000
        # ====== Run inference ===== #
        for trumod, model in [(model, oned), (mvnmodel, twod)]:
            x, y = trumod.sample_path(1000)

            algs = [
                (NESS, {'particles': particles, 'filter_': APF(model.copy(), 200)}),
                (NESS, {'particles': particles, 'filter_': UKF(model.copy())}),
                (SMC2, {'particles': particles, 'filter_': APF(model.copy(), 200)}),
                (SMC2FW, {'particles': particles, 'filter_': APF(model.copy(), 200)}),
                (NESSMC2, {'particles': particles, 'filter_': APF(model.copy(), 200)})
            ]

            for alg, props in algs:
                alg = alg(**props).initialize()

                alg = alg.fit(y)

                w = normalize(alg._w_rec if hasattr(alg, '_w_rec') else torch.ones(particles))

                tru_params = trumod.hidden.theta._cont + trumod.observable.theta._cont
                inf_params = alg.filter.ssm.hidden.theta._cont + alg.filter.ssm.observable.theta._cont

                for trup, p in zip(tru_params, inf_params):
                    if not p.trainable:
                        continue

                    kde = p.get_kde(weights=w)

                    transed = p.bijection.inv(trup)
                    densval = kde.logpdf(transed.numpy().reshape(-1, 1))
                    priorval = p.distr.log_prob(trup)

                    assert (densval > priorval.numpy()).all()
コード例 #2
0
ファイル: inference.py プロジェクト: HaoWen470/pyfilter
    def test_SequentialAlgorithms(self):
        particles = 1000

        for true_model, model in [(make_model(False), make_model(True)),
                                  (make_model(False, 2), make_model(True, 2))]:
            x, y = true_model.sample_path(1000)

            algs = [
                (NESS, {
                    "particles": particles,
                    "filter_": APF(model.copy(), 200)
                }),
                (NESS, {
                    "particles": particles,
                    "filter_": UKF(model.copy())
                }),
                (SMC2, {
                    "particles": particles,
                    "filter_": APF(model.copy(), 125)
                }),
                (SMC2FW, {
                    "particles": particles,
                    "filter_": APF(model.copy(), 200)
                }),
                (NESSMC2, {
                    "particles": particles,
                    "filter_": APF(model.copy(), 200)
                }),
            ]

            for alg_type, props in algs:
                alg = alg_type(**props)
                state = alg.fit(y)

                w = state.normalized_weights()

                zipped = zip(true_model.hidden.functional_parameters(),
                             alg.filter.ssm.parameters_and_priors())

                for true_p, (p, prior) in zipped:
                    kde = gaussian_kde(
                        prior.get_unconstrained(p).squeeze().numpy(),
                        weights=w.numpy())

                    inverse_true_value = prior.bijection.inv(true_p)

                    posterior_log_prob = kde.logpdf(
                        inverse_true_value.numpy().reshape(-1, 1))
                    prior_log_prob = prior.unconstrained_prior.log_prob(
                        inverse_true_value)

                    assert (posterior_log_prob > prior_log_prob.numpy()).all()
コード例 #3
0
    def test_StateDict(self):
        # ===== Define model ===== #
        norm = Normal(0., 1.)
        linear = AffineProcess((f, g), (1., 1.), norm, norm)
        linearobs = AffineObservations((fo, go), (1., 1.), norm)
        model = StateSpaceModel(linear, linearobs)

        # ===== Define filter ===== #
        filt = SISR(model, 100).initialize()

        # ===== Get statedict ===== #
        sd = filt.state_dict()

        # ===== Verify that we don't save multiple instances ===== #
        assert '_model' in sd and '_model' not in sd['_proposal']

        newfilt = SISR(model, 1000).load_state_dict(sd)
        assert newfilt._w_old is not None and newfilt.ssm is newfilt._proposal._model

        # ===== Test same with UKF and verify that we save UT ===== #
        ukf = UKF(model).initialize()
        sd = ukf.state_dict()

        assert '_model' in sd and '_model' not in sd['_ut']
コード例 #4
0
ファイル: filters.py プロジェクト: oneway3124/pyfilter
    def test_SDE(self):
        def f(x, a, s):
            return -a * x

        def g(x, a, s):
            return s

        em = AffineEulerMaruyama((f, g), (0.02, 0.15), Normal(0., 1.), Normal(0., 1.), dt=1e-2, num_steps=10)
        model = LinearGaussianObservations(em, scale=1e-3)

        x, y = model.sample_path(500)

        with self.assertRaises(NotImplementedError):
            SISR(model, 200)

        for filt in [SISR(model, 500, proposal=Bootstrap()), UKF(model)]:
            filt = filt.initialize().longfilter(y)

            means = filt.filtermeans
            if isinstance(filt, UKF):
                means = means[:, 0]

            self.assertLess(torch.std(x - means), 5e-2)
コード例 #5
0
ファイル: filters.py プロジェクト: HaoWen470/pyfilter
    def test_SDE(self):
        def f(x, a, s):
            return -a * x

        def g(x, a, s):
            return s

        dt = 1e-2
        norm = DistributionWrapper(Normal, loc=0.0, scale=sqrt(dt))

        em = AffineEulerMaruyama((f, g), (0.02, 0.15), norm, norm, dt=1e-2, num_steps=10)
        model = LinearGaussianObservations(em, scale=1e-3)

        x, y = model.sample_path(500)

        for filt in [SISR(model, 500, proposal=prop.Bootstrap()), UKF(model)]:
            result = filt.longfilter(y)

            means = result.filter_means
            if isinstance(filt, UKF):
                means = means[:, 0]

            self.assertLess(torch.std(x - means), 5e-2)