コード例 #1
0
def test_predict_is_length():
    """
    Tests that the prediction IS dataframe length is equal to the number of steps h
    """
    model = ARIMA(data=data, ar=2, ma=2, family=t())
    x = model.fit()
    assert (model.predict_is(h=5).shape[0] == 5)
コード例 #2
0
def a_test_bbvi_elbo():
    """
    Tests that the ELBO increases
    """
    model = ARIMA(data=data, ar=1, ma=0, family=Exponential())
    x = model.fit('BBVI', iterations=200, record_elbo=True, map_start=False)
    assert (x.elbo_records[-1] > x.elbo_records[0])
コード例 #3
0
def a_test_ppc():
    """
    Tests PPC value
    """
    model = ARIMA(data=data, ar=2, ma=2, family=Exponential())
    x = model.fit('BBVI', iterations=100)
    p_value = model.ppc(nsims=100)
    assert (0.0 <= p_value <= 1.0)
コード例 #4
0
def test_ppc():
    """
    Tests PPC value
    """
    model = ARIMA(data=data, ar=2, ma=2, family=t())
    x = model.fit('BBVI', iterations=100, quiet_progress=True)
    p_value = model.ppc(nsims=100)
    assert (0.0 <= p_value <= 1.0)
コード例 #5
0
def test_predict_nans():
    """
    Tests that the predictions are not nans
    """
    model = ARIMA(data=data, ar=2, ma=2, family=t())
    x = model.fit()
    assert (len(
        model.predict(h=5).values[np.isnan(model.predict(h=5).values)]) == 0)
コード例 #6
0
def a_test_sample_model():
    """
    Tests sampling function
    """
    model = ARIMA(data=data, ar=2, ma=2, family=Exponential())
    x = model.fit('BBVI', iterations=100)
    sample = model.sample(nsims=100)
    assert (sample.shape[0] == 100)
    assert (sample.shape[1] == len(data) - 2)
コード例 #7
0
def test_predict_nonconstant():
    """
    We should not really have predictions that are constant (should be some difference)...
    This captures bugs with the predict function not iterating forward
    """
    model = ARIMA(data=data, ar=2, ma=2, family=t())
    x = model.fit()
    predictions = model.predict(h=10, intervals=False)
    assert (not np.all(predictions.values == predictions.values[0]))
コード例 #8
0
def test_predict_is_nans():
    """
    Tests that the in-sample predictions are not nans
    """
    model = ARIMA(data=data, ar=2, ma=2)
    x = model.fit()
    assert (len(
        model.predict_is(h=5).values[np.isnan(
            model.predict_is(h=5).values)]) == 0)
コード例 #9
0
def test_sample_model():
    """
    Tests sampling function
    """
    model = ARIMA(data=data, ar=2, ma=2, family=t())
    x = model.fit('BBVI', iterations=100, quiet_progress=True)
    sample = model.sample(nsims=100)
    assert (sample.shape[0] == 100)
    assert (sample.shape[1] == len(data) - 2)
コード例 #10
0
def test_pml():
    """
    Tests a PML model estimated with Laplace approximation and that the length of the 
    latent variable list is correct, and that the estimated latent variables are not nan
    """
    model = ARIMA(data=data, ar=1, ma=1)
    x = model.fit('PML')
    assert (len(model.latent_variables.z_list) == 4)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #11
0
def test_mh():
    """
    Tests an ARIMA model estimated with Metropolis-Hastings and that the length of the 
    latent variable list is correct, and that the estimated latent variables are not nan
    """
    model = ARIMA(data=data, ar=1, ma=1)
    x = model.fit('M-H', nsims=200, quiet_progress=True)
    assert (len(model.latent_variables.z_list) == 4)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #12
0
def test_bbvi_elbo():
    """
    Tests that the ELBO increases
    """
    model = ARIMA(data=data, ar=1, ma=1)
    x = model.fit('BBVI',
                  iterations=100,
                  quiet_progress=True,
                  record_elbo=True)
    assert (x.elbo_records[-1] > x.elbo_records[0])
コード例 #13
0
def test_bbvi_mini_batch():
    """
    Tests an ARIMA model estimated with BBVI and that the length of the latent variable
    list is correct, and that the estimated latent variables are not nan
    """
    model = ARIMA(data=data, ar=1, ma=1)
    x = model.fit('BBVI', iterations=100, quiet_progress=True, mini_batch=32)
    assert (len(model.latent_variables.z_list) == 4)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #14
0
def a_test_bbvi_mini_batch():
    """
    Tests an ARIMA model estimated with BBVI and that the length of the latent variable
    list is correct, and that the estimated latent variables are not nan
    """
    model = ARIMA(data=data, ar=1, ma=0, family=Exponential())
    x = model.fit('BBVI', iterations=200, mini_batch=32)
    assert (len(model.latent_variables.z_list) == 3)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #15
0
def a_test_laplace():
    """
    Tests an ARIMA model estimated with Laplace approximation and that the length of the 
    latent variable list is correct, and that the estimated latent variables are not nan
    """
    model = ARIMA(data=data, ar=1, ma=1, family=Exponential())
    x = model.fit('Laplace')
    assert (len(model.latent_variables.z_list) == 3)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #16
0
def a_test_mh():
    """
    Tests an ARIMA model estimated with Metropolis-Hastings and that the length of the 
    latent variable list is correct, and that the estimated latent variables are not nan
    """
    model = ARIMA(data=data, ar=1, ma=1, family=Exponential())
    x = model.fit('M-H', nsims=300)
    assert (len(model.latent_variables.z_list) == 3)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #17
0
def test_couple_terms_integ():
    """
    Tests an ARIMA model with 1 AR and 1 MA term, integrated once, and that
    the latent variable list length is correct, and that the estimated
    latent variables are not nan
    """
    model = ARIMA(data=data, ar=1, ma=1, integ=1, family=t())
    x = model.fit()
    assert (len(model.latent_variables.z_list) == 5)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #18
0
def test_no_terms():
    """
    Tests an ARIMA model with no AR or MA terms, and that
    the latent variable list length is correct, and that the estimated
    latent variables are not nan
    """
    model = ARIMA(data=data, ar=0, ma=0, family=t())
    x = model.fit()
    assert (len(model.latent_variables.z_list) == 3)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #19
0
def a_test_predict_is_intervals_mh():
    """
    Tests prediction intervals are ordered correctly
    """
    model = ARIMA(data=data, ar=2, ma=2, family=Exponential())
    x = model.fit('M-H', nsims=400)
    predictions = model.predict_is(h=10, intervals=True)
    assert (np.all(predictions['99% Prediction Interval'].values >
                   predictions['95% Prediction Interval'].values))
    assert (np.all(predictions['95% Prediction Interval'].values >
                   predictions['5% Prediction Interval'].values))
    assert (np.all(predictions['5% Prediction Interval'].values >
                   predictions['1% Prediction Interval'].values))
コード例 #20
0
def a_test_predict_is_intervals_bbvi():
    """
    Tests prediction intervals are ordered correctly
    """
    model = ARIMA(data=data, ar=1, ma=0, family=Exponential())
    x = model.fit('BBVI', iterations=200)
    predictions = model.predict_is(h=10, intervals=True)
    assert (np.all(predictions['99% Prediction Interval'].values >
                   predictions['95% Prediction Interval'].values))
    assert (np.all(predictions['95% Prediction Interval'].values >
                   predictions['5% Prediction Interval'].values))
    assert (np.all(predictions['5% Prediction Interval'].values >
                   predictions['1% Prediction Interval'].values))
コード例 #21
0
def test_predict_is_intervals_mh():
    """
    Tests prediction intervals are ordered correctly
    """
    model = ARIMA(data=data, ar=2, ma=2, family=Cauchy())
    x = model.fit('M-H', nsims=200, quiet_progress=True)
    predictions = model.predict_is(h=10, intervals=True)
    assert (np.all(predictions['99% Prediction Interval'].values >
                   predictions['95% Prediction Interval'].values))
    assert (np.all(predictions['95% Prediction Interval'].values >
                   predictions['5% Prediction Interval'].values))
    assert (np.all(predictions['5% Prediction Interval'].values >
                   predictions['1% Prediction Interval'].values))
コード例 #22
0
def test_predict_is_intervals_bbvi():
    """
    Tests prediction intervals are ordered correctly
    """
    model = ARIMA(data=data, ar=2, ma=2, family=Poisson())
    x = model.fit('BBVI', iterations=100, quiet_progress=True)
    predictions = model.predict_is(h=10, intervals=True)
    assert (np.all(predictions['99% Prediction Interval'].values >=
                   predictions['95% Prediction Interval'].values))
    assert (np.all(predictions['95% Prediction Interval'].values >=
                   predictions['5% Prediction Interval'].values))
    assert (np.all(predictions['5% Prediction Interval'].values >=
                   predictions['1% Prediction Interval'].values))
コード例 #23
0
def test_predict_intervals():
    """
    Tests prediction intervals are ordered correctly
    """
    model = ARIMA(data=data, ar=2, ma=2, family=Cauchy())
    x = model.fit()
    predictions = model.predict(h=10, intervals=True)

    assert (np.all(predictions['99% Prediction Interval'].values >
                   predictions['95% Prediction Interval'].values))
    assert (np.all(predictions['95% Prediction Interval'].values >
                   predictions['5% Prediction Interval'].values))
    assert (np.all(predictions['5% Prediction Interval'].values >
                   predictions['1% Prediction Interval'].values))