def test_predict_is_length(): """ Tests that the prediction IS dataframe length is equal to the number of steps h """ model = ARIMA(data=data, ar=2, ma=2, family=t()) x = model.fit() assert (model.predict_is(h=5).shape[0] == 5)
def a_test_bbvi_elbo(): """ Tests that the ELBO increases """ model = ARIMA(data=data, ar=1, ma=0, family=Exponential()) x = model.fit('BBVI', iterations=200, record_elbo=True, map_start=False) assert (x.elbo_records[-1] > x.elbo_records[0])
def a_test_ppc(): """ Tests PPC value """ model = ARIMA(data=data, ar=2, ma=2, family=Exponential()) x = model.fit('BBVI', iterations=100) p_value = model.ppc(nsims=100) assert (0.0 <= p_value <= 1.0)
def test_ppc(): """ Tests PPC value """ model = ARIMA(data=data, ar=2, ma=2, family=t()) x = model.fit('BBVI', iterations=100, quiet_progress=True) p_value = model.ppc(nsims=100) assert (0.0 <= p_value <= 1.0)
def test_predict_nans(): """ Tests that the predictions are not nans """ model = ARIMA(data=data, ar=2, ma=2, family=t()) x = model.fit() assert (len( model.predict(h=5).values[np.isnan(model.predict(h=5).values)]) == 0)
def a_test_sample_model(): """ Tests sampling function """ model = ARIMA(data=data, ar=2, ma=2, family=Exponential()) x = model.fit('BBVI', iterations=100) sample = model.sample(nsims=100) assert (sample.shape[0] == 100) assert (sample.shape[1] == len(data) - 2)
def test_predict_nonconstant(): """ We should not really have predictions that are constant (should be some difference)... This captures bugs with the predict function not iterating forward """ model = ARIMA(data=data, ar=2, ma=2, family=t()) x = model.fit() predictions = model.predict(h=10, intervals=False) assert (not np.all(predictions.values == predictions.values[0]))
def test_predict_is_nans(): """ Tests that the in-sample predictions are not nans """ model = ARIMA(data=data, ar=2, ma=2) x = model.fit() assert (len( model.predict_is(h=5).values[np.isnan( model.predict_is(h=5).values)]) == 0)
def test_sample_model(): """ Tests sampling function """ model = ARIMA(data=data, ar=2, ma=2, family=t()) x = model.fit('BBVI', iterations=100, quiet_progress=True) sample = model.sample(nsims=100) assert (sample.shape[0] == 100) assert (sample.shape[1] == len(data) - 2)
def test_pml(): """ Tests a PML model estimated with Laplace approximation and that the length of the latent variable list is correct, and that the estimated latent variables are not nan """ model = ARIMA(data=data, ar=1, ma=1) x = model.fit('PML') assert (len(model.latent_variables.z_list) == 4) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert (len(lvs[np.isnan(lvs)]) == 0)
def test_mh(): """ Tests an ARIMA model estimated with Metropolis-Hastings and that the length of the latent variable list is correct, and that the estimated latent variables are not nan """ model = ARIMA(data=data, ar=1, ma=1) x = model.fit('M-H', nsims=200, quiet_progress=True) assert (len(model.latent_variables.z_list) == 4) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert (len(lvs[np.isnan(lvs)]) == 0)
def test_bbvi_elbo(): """ Tests that the ELBO increases """ model = ARIMA(data=data, ar=1, ma=1) x = model.fit('BBVI', iterations=100, quiet_progress=True, record_elbo=True) assert (x.elbo_records[-1] > x.elbo_records[0])
def test_bbvi_mini_batch(): """ Tests an ARIMA model estimated with BBVI and that the length of the latent variable list is correct, and that the estimated latent variables are not nan """ model = ARIMA(data=data, ar=1, ma=1) x = model.fit('BBVI', iterations=100, quiet_progress=True, mini_batch=32) assert (len(model.latent_variables.z_list) == 4) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert (len(lvs[np.isnan(lvs)]) == 0)
def a_test_bbvi_mini_batch(): """ Tests an ARIMA model estimated with BBVI and that the length of the latent variable list is correct, and that the estimated latent variables are not nan """ model = ARIMA(data=data, ar=1, ma=0, family=Exponential()) x = model.fit('BBVI', iterations=200, mini_batch=32) assert (len(model.latent_variables.z_list) == 3) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert (len(lvs[np.isnan(lvs)]) == 0)
def a_test_laplace(): """ Tests an ARIMA model estimated with Laplace approximation and that the length of the latent variable list is correct, and that the estimated latent variables are not nan """ model = ARIMA(data=data, ar=1, ma=1, family=Exponential()) x = model.fit('Laplace') assert (len(model.latent_variables.z_list) == 3) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert (len(lvs[np.isnan(lvs)]) == 0)
def a_test_mh(): """ Tests an ARIMA model estimated with Metropolis-Hastings and that the length of the latent variable list is correct, and that the estimated latent variables are not nan """ model = ARIMA(data=data, ar=1, ma=1, family=Exponential()) x = model.fit('M-H', nsims=300) assert (len(model.latent_variables.z_list) == 3) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert (len(lvs[np.isnan(lvs)]) == 0)
def test_couple_terms_integ(): """ Tests an ARIMA model with 1 AR and 1 MA term, integrated once, and that the latent variable list length is correct, and that the estimated latent variables are not nan """ model = ARIMA(data=data, ar=1, ma=1, integ=1, family=t()) x = model.fit() assert (len(model.latent_variables.z_list) == 5) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert (len(lvs[np.isnan(lvs)]) == 0)
def test_no_terms(): """ Tests an ARIMA model with no AR or MA terms, and that the latent variable list length is correct, and that the estimated latent variables are not nan """ model = ARIMA(data=data, ar=0, ma=0, family=t()) x = model.fit() assert (len(model.latent_variables.z_list) == 3) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert (len(lvs[np.isnan(lvs)]) == 0)
def a_test_predict_is_intervals_mh(): """ Tests prediction intervals are ordered correctly """ model = ARIMA(data=data, ar=2, ma=2, family=Exponential()) x = model.fit('M-H', nsims=400) predictions = model.predict_is(h=10, intervals=True) assert (np.all(predictions['99% Prediction Interval'].values > predictions['95% Prediction Interval'].values)) assert (np.all(predictions['95% Prediction Interval'].values > predictions['5% Prediction Interval'].values)) assert (np.all(predictions['5% Prediction Interval'].values > predictions['1% Prediction Interval'].values))
def a_test_predict_is_intervals_bbvi(): """ Tests prediction intervals are ordered correctly """ model = ARIMA(data=data, ar=1, ma=0, family=Exponential()) x = model.fit('BBVI', iterations=200) predictions = model.predict_is(h=10, intervals=True) assert (np.all(predictions['99% Prediction Interval'].values > predictions['95% Prediction Interval'].values)) assert (np.all(predictions['95% Prediction Interval'].values > predictions['5% Prediction Interval'].values)) assert (np.all(predictions['5% Prediction Interval'].values > predictions['1% Prediction Interval'].values))
def test_predict_is_intervals_mh(): """ Tests prediction intervals are ordered correctly """ model = ARIMA(data=data, ar=2, ma=2, family=Cauchy()) x = model.fit('M-H', nsims=200, quiet_progress=True) predictions = model.predict_is(h=10, intervals=True) assert (np.all(predictions['99% Prediction Interval'].values > predictions['95% Prediction Interval'].values)) assert (np.all(predictions['95% Prediction Interval'].values > predictions['5% Prediction Interval'].values)) assert (np.all(predictions['5% Prediction Interval'].values > predictions['1% Prediction Interval'].values))
def test_predict_is_intervals_bbvi(): """ Tests prediction intervals are ordered correctly """ model = ARIMA(data=data, ar=2, ma=2, family=Poisson()) x = model.fit('BBVI', iterations=100, quiet_progress=True) predictions = model.predict_is(h=10, intervals=True) assert (np.all(predictions['99% Prediction Interval'].values >= predictions['95% Prediction Interval'].values)) assert (np.all(predictions['95% Prediction Interval'].values >= predictions['5% Prediction Interval'].values)) assert (np.all(predictions['5% Prediction Interval'].values >= predictions['1% Prediction Interval'].values))
def test_predict_intervals(): """ Tests prediction intervals are ordered correctly """ model = ARIMA(data=data, ar=2, ma=2, family=Cauchy()) x = model.fit() predictions = model.predict(h=10, intervals=True) assert (np.all(predictions['99% Prediction Interval'].values > predictions['95% Prediction Interval'].values)) assert (np.all(predictions['95% Prediction Interval'].values > predictions['5% Prediction Interval'].values)) assert (np.all(predictions['5% Prediction Interval'].values > predictions['1% Prediction Interval'].values))