コード例 #1
0
def test_predict_is_length():
	"""
	Tests that the prediction IS dataframe length is equal to the number of steps h
	"""
	model = pf.GASLLT(data=data, family=pf.GASNormal())
	x = model.fit()
	assert(model.predict_is(h=5).shape[0] == 5)
コード例 #2
0
def test_normal_predict_is_length():
    """
	Tests that the length of the predict IS dataframe is equal to no of steps h
	"""
    model = pf.GASReg(formula="y ~ x1", data=data, family=pf.GASNormal())
    x = model.fit()
    assert (model.predict_is(h=5).shape[0] == 5)
コード例 #3
0
def test2_normal_predict_length():
    """
	Tests that the length of the predict dataframe is equal to no of steps h
	"""
    model = pf.GASReg(formula="y ~ x1 + x2", data=data, family=pf.GASNormal())
    x = model.fit()
    x.summary()
    assert (model.predict(h=5, oos_data=data_oos).shape[0] == 5)
コード例 #4
0
def test_predict_length():
	"""
	Tests that the prediction dataframe length is equal to the number of steps h
	"""
	model = pf.GAS(data=data, ar=2, sc=2, family=pf.GASNormal())
	x = model.fit()
	x.summary()
	assert(model.predict(h=5).shape[0] == 5)
コード例 #5
0
def test_predict_nans():
	"""
	Tests that the predictions are not nans
	"""
	model = pf.GASLLT(data=data, family=pf.GASNormal())
	x = model.fit()
	x.summary()
	assert(len(model.predict(h=5).values[np.isnan(model.predict(h=5).values)]) == 0)
コード例 #6
0
def test_predict_is_nans():
	"""
	Tests that the in-sample predictions are not nans
	"""
	model = pf.GAS(data=data, ar=2, sc=2, family=pf.GASNormal())
	x = model.fit()
	x.summary()
	assert(len(model.predict_is(h=5).values[np.isnan(model.predict_is(h=5).values)]) == 0)
コード例 #7
0
def test_normal_predict_nans():
    """
	Tests that the predictions are not NaNs
	"""
    model = pf.GASReg(formula="y ~ x1", data=data, family=pf.GASNormal())
    x = model.fit()
    x.summary()
    assert (len(
        model.predict(h=5, oos_data=data_oos).values[np.isnan(
            model.predict(h=5, oos_data=data_oos).values)]) == 0)
コード例 #8
0
def test2_normal_predict_is_nans():
    """
	Tests that the predictions in-sample are not NaNs
	"""
    model = pf.GASReg(formula="y ~ x1 + x2", data=data, family=pf.GASNormal())
    x = model.fit()
    x.summary()
    assert (len(
        model.predict_is(h=5).values[np.isnan(
            model.predict_is(h=5).values)]) == 0)
コード例 #9
0
def test_pml():
	"""
	Tests a PML model estimated with Laplace approximation and that the length of the 
	latent variable list is correct, and that the estimated latent variables are not nan
	"""
	model = pf.GASLLT(data=data, family=pf.GASNormal())
	x = model.fit('PML')
	assert(len(model.latent_variables.z_list) == 3)
	lvs = np.array([i.value for i in model.latent_variables.z_list])
	assert(len(lvs[np.isnan(lvs)]) == 0)
コード例 #10
0
def test_mh():
	"""
	Tests an GAS model estimated with Metropolis-Hastings and that the length of the 
	latent variable list is correct, and that the estimated latent variables are not nan
	"""
	model = pf.GASLLT(data=data, family=pf.GASNormal())
	x = model.fit('M-H',nsims=300)
	assert(len(model.latent_variables.z_list) == 3)
	lvs = np.array([i.value for i in model.latent_variables.z_list])
	assert(len(lvs[np.isnan(lvs)]) == 0)
コード例 #11
0
def test_bbvi():
	"""
	Tests an GAS model estimated with BBVI and that the length of the latent variable
	list is correct, and that the estimated latent variables are not nan
	"""
	model = pf.GASLLT(data=data, family=pf.GASNormal())
	x = model.fit('BBVI',iterations=100)
	assert(len(model.latent_variables.z_list) == 3)
	lvs = np.array([i.value for i in model.latent_variables.z_list])
	assert(len(lvs[np.isnan(lvs)]) == 0)
コード例 #12
0
def test_couple_terms_integ():
	"""
	Tests  latent variable list length is correct, and that the estimated
	latent variables are not nan
	"""
	model = pf.GASLLT(data=data, integ=1, family=pf.GASNormal())
	x = model.fit()
	assert(len(model.latent_variables.z_list) == 3)
	lvs = np.array([i.value for i in model.latent_variables.z_list])
	assert(len(lvs[np.isnan(lvs)]) == 0)
コード例 #13
0
def test2_normal_normal():
    """
	Tests an GASReg model estimated with Laplace, with multiple predictors, and 
	tests that the latent variable vector length is correct, and that value are not nan
	"""
    model = pf.GASReg(formula="y ~ x1 + x2", data=data, family=pf.GASNormal())
    x = model.fit('Laplace')
    assert (len(model.latent_variables.z_list) == 4)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #14
0
def test_normal_no_terms():
    """
	Tests the length of the latent variable vector for an GASReg model
	with no AR or MA terms, and tests that the values are not nan
	"""
    model = pf.GASReg(formula="y ~ x1", data=data, family=pf.GASNormal())
    x = model.fit()
    assert (len(model.latent_variables.z_list) == 3)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #15
0
def test_normal_pml():
    """
	Tests an GASReg model estimated with PML, and tests that the latent variable
	vector length is correct, and that value are not nan
	"""
    model = pf.GASReg(formula="y ~ x1", data=data, family=pf.GASNormal())
    x = model.fit('PML')
    assert (len(model.latent_variables.z_list) == 3)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #16
0
def test_couple_terms_integ():
	"""
	Tests an GAS model with 1 AR and 1 MA term, integrated once, and that
	the latent variable list length is correct, and that the estimated
	latent variables are not nan
	"""
	model = pf.GAS(data=data, ar=1, sc=1, integ=1, family=pf.GASNormal())
	x = model.fit()
	assert(len(model.latent_variables.z_list) == 4)
	lvs = np.array([i.value for i in model.latent_variables.z_list])
	assert(len(lvs[np.isnan(lvs)]) == 0)
コード例 #17
0
def test_no_terms():
	"""
	Tests an GAS model with no AR or MA terms, and that
	the latent variable list length is correct, and that the estimated
	latent variables are not nan
	"""
	model = pf.GAS(data=data, ar=0, sc=0, family=pf.GASNormal())
	x = model.fit()
	assert(len(model.latent_variables.z_list) == 2)
	lvs = np.array([i.value for i in model.latent_variables.z_list])
	assert(len(lvs[np.isnan(lvs)]) == 0)
コード例 #18
0
def test_bbvi():
    """
	Tests an GASX model estimated with BBVI, and tests that the latent variable
	vector length is correct, and that value are not nan
	"""
    model = pf.GASX(formula="y ~ x1",
                    data=data,
                    ar=1,
                    sc=1,
                    family=pf.GASNormal())
    x = model.fit('BBVI', iterations=100)
    assert (len(model.latent_variables.z_list) == 5)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #19
0
def test_couple_terms():
    """
	Tests the length of the latent variable vector for an GASX model
	with 1 AR and 1 MA term, and tests that the values are not nan
	"""
    model = pf.GASX(formula="y ~ x1",
                    data=data,
                    ar=1,
                    sc=1,
                    family=pf.GASNormal())
    x = model.fit()
    assert (len(model.latent_variables.z_list) == 5)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)
コード例 #20
0
def test2_mh():
    """
	Tests an GASX model estimated with MEtropolis-Hastings, with multiple predictors, and 
	tests that the latent variable vector length is correct, and that value are not nan
	"""
    model = pf.GASX(formula="y ~ x1 + x2",
                    data=data,
                    ar=1,
                    sc=1,
                    family=pf.GASNormal())
    x = model.fit('M-H', nsims=300)
    assert (len(model.latent_variables.z_list) == 6)
    lvs = np.array([i.value for i in model.latent_variables.z_list])
    assert (len(lvs[np.isnan(lvs)]) == 0)