コード例 #1
0
plt.tight_layout()
fig.set_size_inches(15, 5)

############################
#        Candle Plot       #
#     frequency = D/W/M    #
#          Returns         #
############################
pf.plot_return_quantiles(backtest_returns)

############################
#        Rolling Plot      #
#      frequency = M/Y     #
#            BETA          #
############################
pf.plot_rolling_beta(backtest_returns, benchmark_returns)

############################
#        Rolling Plot      #
#      frequency = M/Y     #
#        SHARPE RATIO      #
############################
pf.plot_rolling_sharpe(backtest_returns)

############################
#  Top 10 Drawdown Periods #
#      frequency = M/Y     #
############################
pf.plot_drawdown_periods(backtest_returns)

############################
コード例 #2
0
plt.subplot(1, 3, 1)
pf.plot_annual_returns(bt_returns)
plt.subplot(1, 3, 2)
pf.plot_monthly_returns_dist(bt_returns)
plt.subplot(1, 3, 3)
pf.plot_monthly_returns_heatmap(bt_returns)
plt.tight_layout()
fig.set_size_inches(15, 5)
plt.savefig(PATH + 'returns_charts.png', dpi=300)
plt.close()

pf.plot_return_quantiles(bt_returns)
plt.savefig(PATH + 'quantiles.png', dpi=300)
plt.close()

pf.plot_rolling_beta(bt_returns, benchmark_rets)
plt.savefig(PATH + 'roll_beta.png', dpi=300)
plt.close()

pf.plot_rolling_sharpe(bt_returns)
plt.savefig(PATH + 'roll_sharpe.png', dpi=300)
plt.close()

pf.plot_rolling_fama_french(bt_returns)
plt.savefig(PATH + 'fama_french.png', dpi=300)
plt.close()

pf.plot_drawdown_periods(bt_returns)
plt.savefig(PATH + 'drawdown.png', dpi=300)
plt.close()
コード例 #3
0
warnings.filterwarnings('ignore')

# **2 - Obtendo e tratando os dados**

tickers = ["ABEV3.SA", "ITSA4.SA", "USIM5.SA", "VALE3.SA", "WEGE3.SA", '^BVSP']

dados_yahoo = web.get_data_yahoo(tickers, period="5y")["Adj Close"]


dados_yahoo

retorno = dados_yahoo.pct_change()
retorno

retorno_acumulado = (1 + retorno).cumprod()
retorno_acumulado.iloc[0] = 1
retorno_acumulado

carteira = 10000*retorno_acumulado.iloc[:,:5]
carteira["saldo"] = carteira.sum(axis=1)
carteira["retorno"] = carteira["saldo"].pct_change()
carteira

# **3 - Resultados**

pf.create_full_tear_sheet(carteira["retorno"], benchmark_rets=retorno["^BVSP"])


fig, ax1 = plt.subplots(figsize=(16,8))
pf.plot_rolling_beta(carteira["retorno"], factor_returns=retorno["^BVSP"], ax=ax1)
plt.ylim((0.8, 1.8))
コード例 #4
0
def plot_performance(
    returns, 
    benchmark_prices,
    plot_stats=False,
    startcash=None,
    log_returns=False,
    save_dir=None
):
    """
    :param returns: pd.Series, return data
    :param benchmark_prices: pd.Series, benchmark return data
    :param startcash: int, rebase the benchmark if provided
    :return: None
    """
    if save_dir and not os.path.exists(save_dir):
        os.makedirs(save_dir)
    
    # Rebase benchmark prices, the same as portfolio prices
    if startcash is not None:
        benchmark_prices = (benchmark_prices / benchmark_prices.iloc[0]) * startcash
    benchmark_rets = pyp.expected_returns.returns_from_prices(benchmark_prices)

    if log_returns:
        portfolio_value = returns.cumsum().apply(np.exp) * startcash
    else:
        portfolio_value = (1 + returns).cumprod() * startcash

    # Performance statistics
    if plot_stats:
        pf.show_perf_stats(returns)
        pf.show_perf_stats(benchmark_rets)
    
    # Fig 1: price and return
    fig, ax = plt.subplots(2, 1, sharex=True, figsize=[14, 8])
    portfolio_value.plot(ax=ax[0], label='Portfolio')
    benchmark_prices.plot(ax=ax[0], label='Benchmark')
    ax[0].set_ylabel('Price')
    ax[0].grid(True)
    ax[0].legend()
    
    returns.plot(ax=ax[1], label='Portfolio', alpha=0.5)
    benchmark_rets.plot(ax=ax[1], label='Benchmark', alpha=0.5)
    ax[1].set_ylabel('Return')

    fig.suptitle('Black–Litterman Portfolio Optimization', fontsize=16)
    plt.grid(True)
    plt.legend()
    plt.show()
    if save_dir:
        fig.savefig(os.path.join(save_dir, 'price_and_return'), dpi=300)

    # Fig 2: return performance
    fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(16, 9), constrained_layout=False)
    axes = ax.flatten()
    pf.plot_rolling_beta(returns=returns, factor_returns=benchmark_rets, ax=axes[0])
    pf.plot_return_quantiles(returns=returns, ax=axes[1])
    pf.plot_annual_returns(returns=returns, ax=axes[2])
    pf.plot_monthly_returns_heatmap(returns=returns, ax=axes[3])
    axes[0].grid(True)
    axes[1].grid(True)
    axes[2].grid(True)
    fig.suptitle('Return performance', fontsize=16, y=1.0)
    plt.tight_layout()
    if save_dir:
        fig.savefig(os.path.join(save_dir, 'return_performance'), dpi=300)
        
    # Fig 3: risk performance
    fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(14, 8), constrained_layout=False)
    axes = ax.flatten()
    pf.plot_drawdown_periods(returns=returns, ax=axes[0])
    pf.plot_rolling_volatility(returns=returns, factor_returns=benchmark_rets, ax=axes[1])
    pf.plot_drawdown_underwater(returns=returns, ax=axes[2])
    pf.plot_rolling_sharpe(returns=returns, ax=axes[3])
    axes[0].grid(True)
    axes[1].grid(True)
    axes[2].grid(True)
    axes[3].grid(True)
    fig.suptitle('Risk performance', fontsize=16, y=1.0)
    plt.tight_layout()
    if save_dir:
        fig.savefig(os.path.join(save_dir, 'risk_performance'), dpi=300)