def __init__(self): freeling.util_init_locale("default") self.lang= "en" self.ipath="/usr/local" self.lpath=self.ipath + "/share/freeling/" + self.lang + "/" self.tk=freeling.tokenizer(self.lpath+"tokenizer.dat") self.sp=freeling.splitter(self.lpath+"splitter.dat") # create the analyzer with the required set of maco_options self.morfo=freeling.maco(self.my_maco_options(self.lang,self.lpath)); # then, (de)activate required modules self.morfo.set_active_options (False, # UserMap False, # NumbersDetection, True, # PunctuationDetection, False, # DatesDetection, True, # DictionarySearch, True, # AffixAnalysis, False, # CompoundAnalysis, True, # RetokContractions, False, # MultiwordsDetection, True, # NERecognition, False, # QuantitiesDetection, True); # ProbabilityAssignment # create tagger self.tagger = freeling.hmm_tagger(self.lpath+"tagger.dat",True,2) # create sense annotator self.sen = freeling.senses(self.lpath+"senses.dat"); # create sense disambiguator self.wsd = freeling.ukb(self.lpath+"ukb.dat"); # create dependency parser self.parser = freeling.dep_treeler(self.lpath+"dep_treeler/dependences.dat");
def process_file(essay_lst, x): index = 1 for entry in essay_lst: # create tagger essay = entry[1] id = entry[0] tagger = freeling.hmm_tagger(lpath + "tagger.dat", True, 2) # create sense annotator sen = freeling.senses(lpath + "senses.dat") # create sense disambiguator wsd = freeling.ukb(lpath + "ukb.dat") # create dependency parser parser = freeling.chart_parser(lpath + "/chunker/grammar-chunk.dat") dep = freeling.dep_txala(lpath + "/dep_txala/dependences.dat", parser.get_start_symbol()) # tokenize input line into a list of words lw = tk.tokenize(essay) # split list of words in sentences, return list of sentences ls = sp.split(lw) # perform morphosyntactic analysis and disambiguation ls = morfo.analyze(ls) ls = tagger.analyze(ls) # annotate and disambiguate senses ls = sen.analyze(ls) ls = wsd.analyze(ls) # parse sentences ls = parser.analyze(ls) ls = dep.analyze(ls) # do whatever is needed with processed sentences if x == 2: essays_vacation_tagged.append((id, ProcessSentences(ls))) elif x == 3: essays_famous_tagged.append((id, ProcessSentences(ls))) print(index) index += 1
def __init__(self): freeling.util_init_locale("default") self.lang = "en" self.ipath = "/usr/local" self.lpath = self.ipath + "/share/freeling/" + self.lang + "/" self.tk = freeling.tokenizer(self.lpath + "tokenizer.dat") self.sp = freeling.splitter(self.lpath + "splitter.dat") # create the analyzer with the required set of maco_options self.morfo = freeling.maco(self.my_maco_options(self.lang, self.lpath)) # then, (de)activate required modules self.morfo.set_active_options( False, # UserMap False, # NumbersDetection, True, # PunctuationDetection, False, # DatesDetection, True, # DictionarySearch, True, # AffixAnalysis, False, # CompoundAnalysis, True, # RetokContractions, False, # MultiwordsDetection, True, # NERecognition, False, # QuantitiesDetection, True) # ProbabilityAssignment # create tagger self.tagger = freeling.hmm_tagger(self.lpath + "tagger.dat", True, 2) # create sense annotator self.sen = freeling.senses(self.lpath + "senses.dat") # create sense disambiguator self.wsd = freeling.ukb(self.lpath + "ukb.dat") # create dependency parser self.parser = freeling.dep_treeler(self.lpath + "dep_treeler/dependences.dat")
True, # AffixAnalysis, False, # CompoundAnalysis, True, # RetokContractions, True, # MultiwordsDetection, True, # NERecognition, False, # QuantitiesDetection, True) # ProbabilityAssignment # create tagger tagger = pyfreeling.hmm_tagger(lpath + "tagger.dat", True, 2) # create sense annotator sen = pyfreeling.senses(lpath + "senses.dat") # create sense disambiguator wsd = pyfreeling.ukb(lpath + "ukb.dat") # create dependency parser parser = pyfreeling.dep_treeler(lpath + "treeler/dependences.dat") # process input text text = "".join(sys.stdin.readlines()) # tokenize input line into a list of words lw = tk.tokenize(text) # split list of words in sentences, return list of sentences ls = sp.split(lw) # perform morphosyntactic analysis and disambiguation ls = morfo.analyze(ls) ls = tagger.analyze(ls) # annotate and disambiguate senses
True, # PunctuationDetection, True, # DatesDetection, True, # DictionarySearch, True, # AffixAnalysis, False, # CompoundAnalysis, True, # RetokContractions, True, # MultiwordsDetection, True, # NERecognition, True, # QuantitiesDetection, True) # ProbabilityAssignment # create tagger, sense anotator, and parsers tg = pyfreeling.hmm_tagger(DATA + LANG + "/tagger.dat", True, 2) sen = pyfreeling.senses(DATA + LANG + "/senses.dat") wsd = pyfreeling.ukb(DATA + LANG + "/ukb.dat") parser = pyfreeling.dep_lstm(DATA + LANG + "/dep_lstm/params-es.dat") for filepath in os.listdir(ruta_archivos): file = os.path.join(ruta_archivos, filepath) process = Popen([argOE_script, 'rel', 'es', file], stdout=PIPE) (output, err) = process.communicate() exit_code = process.wait() print(output.decode('utf-8')) content = open(file, 'r').read() l = tk.tokenize(content) ls = sp.split(l) ls = mf.analyze(ls)