コード例 #1
0
ファイル: tier3.py プロジェクト: clarkm1811/waffle
    def get_wf(self,channel,index,verbose=False):
        """Pulls a given waveform from the tier 1 data

        """
        if(verbose):
            print(F"Getting wf {index} directly for chan {channel}...")

        t1_file = os.path.join(self.t1_data_dir,"t1_run{}.h5".format(self.run))

        g4 = dl.Gretina4MDecoder(t1_file)

        if self.df1 is None:
            self.load_df1()
        if self.df2 is None:
            self.load_df2()

        row1 = self.df1.loc[index]
        row2 = self.df2.loc[index]

        wf = g4.parse_event_data(row1)

        wf.training_set_index = index
        wf.amplitude = row2.trap_max
        wf.bl_slope = row2.bl_slope
        wf.bl_int = row2.bl_int
        wf.t0_estimate = row2.t0est
        wf.tp_50 = row2.tp_50

        wf.window_waveform(
            time_point=self.wf_batch_conf[channel].align_percent, 
            early_samples=200, 
            num_samples=self.wf_batch_conf[channel].num_samples #200
            )

        return wf
コード例 #2
0
def save_pulsers(num_to_save=10):
    run_number = 11499

    proc = DataProcessor(DataProcessor)

    file_name = os.path.join(proc.t1_data_dir,
                             "t1_run{}.h5".format(run_number))
    df_gretina = pd.read_hdf(file_name, key="ORGretina4MWaveformDecoder")

    g4 = dl.Gretina4MDecoder(file_name)

    df_gretina = df_gretina[df_gretina.energy > 0.1E9]
    channels = df_gretina.channel.unique()

    plt.ion()
    plt.figure(figsize=(14, 7))

    for chan in channels:
        if chan % 2 == 1: continue
        if not is_mj(chan): continue

        plt.clf()
        ax0 = plt.subplot(1, 2, 1)

        plt.xlabel("Time [ns]")
        plt.ylabel("ADC [arb]")

        ax1 = plt.subplot(1, 2, 2)
        ax1.set_xlim(10**6, 0.5 * 10**8)
        plt.title("Channel {}".format(chan))

        df_chan = df_gretina[df_gretina.channel == chan]
        if len(df_chan) == 0:
            print("channel {} appears empty?".format(chan))
            continue

        chan_wfs = []

        for i, (index, row) in enumerate(df_chan.iterrows()):
            wf = g4.parse_event_data(row)
            mean_sub_data = wf.data - np.mean(wf.data[:750])
            # if np.amax(mean_sub_data) < 200: continue

            wf_window = wf.window_waveform(100, 50, 500, method="value")
            if len(wf_window) == 0: continue
            chan_wfs.append(wf)

            ax0.plot(wf_window, c="b", alpha=0.2)

            top_idx = np.argmax(mean_sub_data > 0.9 * mean_sub_data.max())
            xf, power = signal.periodogram(mean_sub_data[top_idx:],
                                           fs=1E8,
                                           detrend="linear")
            ax1.plot(xf, power, alpha=0.5, color="b")

            if len(chan_wfs) >= num_to_save: break

        if len(chan_wfs) < num_to_save: continue
        plt.savefig("pulser_data/chan{}_pulsers.png".format(chan))
        np.savez("pulser_data/chan{}_pulsers.npz".format(chan), wfs=chan_wfs)
コード例 #3
0
ファイル: processing.py プロジェクト: sjmeijer/waffle
    def save_training_data(self, runList, file_name, chanList=None, settle_time=20):
        '''
        settle_time in ms is minimum time since previous event (on same channel)
        '''
        if chanList is None: chanList = self.detectorChanList

        training_df = []

        for runNumber in runList:

            t1_file = os.path.join(self.t1_data_dir,"t1_run{}.h5".format(runNumber))
            t2_file = os.path.join(self.t2_data_dir, "t2_run{}.h5".format(runNumber))

            df = pd.read_hdf(t2_file,key="data")
            tier1 = pd.read_hdf(t1_file,key=self.data_key)
            tier1 = tier1.drop({"channel", "energy", "timestamp"}, axis=1)

            df = df.join(tier1, how="inner")

            df_train = df.loc[df.is_training==1]
            training_df.append(df_train )

        df_train = pd.concat(training_df, axis=0)
        df_train.to_hdf(file_name, key="data", mode='w')

        #TODO: if the multisampling params changed in the middle of this run range, you're hosed.
        g4 = dl.Gretina4MDecoder(t1_file)

        if True:
            for channel, df_chan in df_train.groupby("channel"):
                n_bins = 10
                dt_bins = np.linspace(df_chan.drift_time.min(), df_chan.drift_time.max(), n_bins+1)

                f2 = plt.figure(figsize=(12,8))
                for b_lo, b_hi in zip(dt_bins[:-1], dt_bins[1:]):
                    df_bin = df_chan[(df_chan.drift_time >= b_lo) & (df_chan.drift_time<b_hi)]
                    for i, (index, row) in enumerate(df_bin.iterrows()):
                        if i>=50: break

                        wf=g4.parse_event_data(row)
                        wf_full = wf.get_waveform()
                        wf_full -= row["bl_int"] + np.arange(len(wf_full))*row["bl_slope"]
                        wf_full /= row[self.ecal_name]

                        # t95_int = int(row[self.dt_max_param])
                        t95_int = np.argmax(wf_full > 0.95)
                        wf_plot = wf.data[t95_int-200:t95_int+100]
                        if i == 0:
                            p = plt.plot(wf_plot, alpha=0.1)
                        else:
                            plt.plot(wf_plot, c=p[0].get_color(), alpha=0.1)

                # plt.show()
                # exit()

                try: os.mkdir("training_plots")
                except OSError: pass
                f2.savefig("training_plots/DS{}-{}_chan{}_waveforms".format(self.dataset,self.subset,channel))
                plt.close(f2)
コード例 #4
0
def plot_logic_signals():
    run_number = 11499

    proc = DataProcessor(DataProcessor)

    file_name = os.path.join(proc.t1_data_dir,
                             "t1_run{}.h5".format(run_number))
    df_gretina = pd.read_hdf(file_name, key="ORGretina4MWaveformDecoder")

    df_gretina = df_gretina[df_gretina.energy > 0.5E9]
    # plot the energy spectrum
    # plt.figure()
    # plt.hist(df_gretina.energy)
    # plt.show()
    # exit()

    plt.ion()
    plt.figure()

    channels = df_gretina.channel.unique()

    g4 = dl.Gretina4MDecoder(file_name)
    for chan in channels:
        if chan % 2 == 1: continue
        if not is_mj(chan): continue

        # plt.clf()
        plt.xlabel("Time [ns]")
        plt.ylabel("ADC [arb]")
        plt.title("Channel {}".format(chan))

        df_chan = df_gretina[df_gretina.channel == chan]

        for i, (index, row) in enumerate(df_chan.iterrows()):
            wf = g4.parse_event_data(row)
            mean_sub_data = wf.data - np.mean(wf.data[:750])

            if np.amax(mean_sub_data) < 3000: continue

            plt.plot(wf.time, mean_sub_data, c="b", alpha=0.2)

            square = square_model(mean_sub_data[-1],
                                  np.argmax(mean_sub_data > 3000), 1.7, 0.025,
                                  len(mean_sub_data))
            plt.plot(wf.time, square, c="r")

            if i > 25: break

        inp = input("q to quit, else to continue")
        if inp == "q": exit()
コード例 #5
0
ファイル: test_tier_0.py プロジェクト: sjmeijer/pygama
def plot_waveforms(file_name, num_waveforms=5):
    df_gretina = pd.read_hdf(file_name, key="ORGretina4MWaveformDecoder")

    g4 = dl.Gretina4MDecoder(file_name)

    plt.figure()
    plt.xlabel("Time [ns]")
    plt.ylabel("ADC [arb]")

    for i, (index, row) in enumerate(df_gretina.iterrows()):
        wf = g4.parse_event_data(row)
        wf_sub = wf.data - np.mean(wf.data[:500])
        plt.plot(wf.time, wf_sub, ls="steps", c="b", alpha=0.1)
        if i >= num_waveforms: break
コード例 #6
0
ファイル: processing.py プロジェクト: sjmeijer/waffle
    def save_subset(self, channel, n_waveforms, training_data_file_name, output_file_name, exclude_list = [], do_plot=True):

        df_train = pd.read_hdf(training_data_file_name,key="data")
        df_train = df_train[df_train.channel == channel]

        first_dt = df_train.drift_time.min()
        last_dt = df_train.drift_time.max()

        n_bins_time = n_waveforms

        dt_bins = np.linspace(first_dt, last_dt, n_bins_time+1)

        wfs_per_bin = 1

        wfs_saved = []

        for b_lo, b_hi in zip(dt_bins[:-1], dt_bins[1:]):
            df_bin = df_train[(df_train.drift_time >= b_lo) & (df_train.drift_time<b_hi)]
            for i, (index, row) in enumerate(df_bin.iterrows()):
                if index in exclude_list: continue

                t1_file = os.path.join(self.t1_data_dir, "t1_run{}.h5".format(row.runNumber))
                g4 = dl.Gretina4MDecoder(t1_file)
                wf=g4.parse_event_data(row)

                wf.training_set_index = index
                wf.amplitude = row.trap_max
                wf.bl_slope = row.bl_slope
                wf.bl_int = row.bl_int
                wf.t0_estimate = row.t0est
                wf.tp_50 = row.tp_50

                wfs_saved.append(wf)
                break

        np.savez(output_file_name, wfs=wfs_saved)

        if do_plot:
            try: os.mkdir("training_plots")
            except OSError: pass

            f, ax = plt.subplots(1,2, figsize=(12,8))
            # print ("Channel {} set:".format(channel))
            for wf in wfs_saved:
                # print("  index {}".format(wf.training_set_index))
                wf_window = wf.window_waveform()
                ax[0].plot( wf_window )
                ax[1].plot( wf_window / wf.amplitude )

            plt.savefig("training_plots/DS{}-{}_chan{}_{}wf_set.png".format(self.dataset,self.subset, channel, n_waveforms))
コード例 #7
0
def plot_pulser_ffts():
    run_number = 11499

    proc = DataProcessor(DataProcessor)

    file_name = os.path.join(proc.t1_data_dir,
                             "t1_run{}.h5".format(run_number))
    df_gretina = pd.read_hdf(file_name, key="ORGretina4MWaveformDecoder")

    g4 = dl.Gretina4MDecoder(file_name)

    df_gretina = df_gretina[df_gretina.energy > 0.5E9]
    channels = df_gretina.channel.unique()

    plt.ion()
    plt.figure(figsize=(14, 7))
    ax1 = plt.gca()
    ax1.set_xlim(10**6, 0.5 * 10**8)

    pulser_count = 50

    for chan in channels:

        if chan % 2 == 1: continue
        if not is_mj(chan): continue

        df_chan = df_gretina[df_gretina.channel == chan]
        avg_wf = np.zeros(900)
        avg_count = 0
        for i, (index, row) in enumerate(df_chan.iterrows()):
            wf = g4.parse_event_data(row)
            mean_sub_data = wf.data - np.mean(wf.data[:750])
            if np.amax(mean_sub_data) < 200: continue

            top_idx = np.argmax(mean_sub_data > 1000) + 15
            wf_top = mean_sub_data[top_idx:top_idx + 900]

            avg_wf += wf_top
            avg_count += 1

            if avg_count >= pulser_count: break
        if avg_count < pulser_count: continue
        avg_wf /= pulser_count

        xf, power = signal.periodogram(avg_wf, fs=1E8, detrend="linear")
        plt.semilogx(xf, power, label="channel {}".format(chan))
    plt.legend(loc=2)
    inp = input("q to quit, else to continue")
    if inp == "q": exit()
コード例 #8
0
def save_pulsers(num_to_save = 10):
    run_number = 848

    file_name = "t1_run{}.h5".format(run_number)
    df_gretina = pd.read_hdf(file_name, key="ORGretina4MWaveformDecoder")

    g4 = dl.Gretina4MDecoder(file_name)

    df_gretina = df_gretina[df_gretina.energy > 0.5E9]
    channels = df_gretina.channel.unique()

    plt.ion()
    plt.figure()

    for chan in channels:
        plt.clf()
        plt.xlabel("Time [ns]")
        plt.ylabel("ADC [arb]")
        plt.title("Channel {}".format(chan))

        df_chan = df_gretina[df_gretina.channel == chan]

        chan_wfs = []

        for i, (index, row) in enumerate(df_chan.iterrows()):
            if index < 10: continue
            wf = g4.parse_event_data(row)
            wf.bl_int = np.mean(wf.data[:200])
            wf.bl_slope=0
            mean_sub_data = wf.data - wf.bl_int

            if np.amax(mean_sub_data) < 5000: continue
            if np.count_nonzero( mean_sub_data > 0.5*mean_sub_data.max()) < 10: continue

            # plt.plot(mean_sub_data)
            wf_window = wf.window_waveform(1000, 10, 100, method="value")
            chan_wfs.append(  wf )
            plt.plot(wf_window, c="b", alpha=0.2 )

            if len(chan_wfs) >= num_to_save: break

        if len(chan_wfs) < num_to_save: continue
        plt.savefig("pulser_data/chan{}_pulsers.png".format(chan))
        np.savez("pulser_data/chan{}_pulsers.npz".format(chan), wfs=chan_wfs)
コード例 #9
0
ファイル: overshoot.py プロジェクト: benshanks/mjd-analysis
def plot_logic_signals(run_number):
    file_name = "t1_run{}.h5".format(run_number)
    df_gretina = pd.read_hdf(file_name, key="ORGretina4MWaveformDecoder")

    plt.ion()
    plt.figure()

    channels = df_gretina.channel.unique()
    print(channels)

    g4 = dl.Gretina4MDecoder(file_name)
    for chan in channels:
        # plt.clf()
        plt.title("Channel {}".format(chan))

        df_chan = df_gretina[df_gretina.channel == chan]

        for i, (index, row) in enumerate(df_chan.iterrows()):
            wf = g4.parse_event_data(row)
            mean_sub_data = wf.data - np.mean(wf.data[:400])

            #max val
            if np.count_nonzero(
                    mean_sub_data > 0.5 * mean_sub_data.max()) < 10:
                continue

            align_data = align(mean_sub_data, 100)

            plt.plot(align_data, c="b", alpha=0.2)

            square = square_model(align_data[-1], 98, 2, 2.75, 0.01,
                                  len(align_data))
            plt.plot(square, c="r")

            if i > 25: break

        inp = input("q to quit, else to continue")
        if inp == "q": exit()
コード例 #10
0
ファイル: fit_decay.py プロジェクト: benshanks/mjd-analysis
def main():

    runList = [848]
    plt.ion()
    f = plt.figure(figsize=(12,9))


    rc_num, rc_den = filt.rc_decay(72)
    overshoot_num, overshoot_den = filt.gretina_overshoot(2, -3.5)

    for runNumber in runList:
        t1_file = "t1_run{}.h5".format(runNumber)
        df = pd.read_hdf(t1_file,key="ORGretina4MWaveformDecoder")
        g4 = dl.Gretina4MDecoder(t1_file)

        chanList = [49]#np.unique(df["channel"])

        for chan in chanList:
            df_chan = df[df.channel == chan]

            for i, (index, row) in enumerate(df_chan.iterrows()):
                if i<10: continue
                wf = g4.parse_event_data(row)
                wf_dat = wf.data - np.mean(wf.data[:200])
                if np.amax(wf_dat) < 200: continue
                if np.count_nonzero( wf_dat > 0.5*wf_dat.max()) < 10: continue

                max_idx = np.argmax(wf_dat>20)

                wf_corr, model, t0 = fit_tail(wf_dat, max_idx)
                plt.plot(wf_dat)
                plt.plot(wf_corr)
                plt.plot(np.arange(max_idx+t0, max_idx+t0+len(model)), model, c="r")
                plt.axvline(max_idx,c="r", ls=":")

                inp = input("q to continue, else to quit")
                if inp == "q": exit()
コード例 #11
0
def main():

    runList = np.arange(11515, 11516)
    proc = DataProcessor()

    plt.ion()
    f = plt.figure(figsize=(12, 9))

    rc_num, rc_den = filt.rc_decay(72)
    overshoot_num, overshoot_den = filt.gretina_overshoot(2, -3.5)

    # print(overshoot_num, overshoot_den)
    # exit()

    ds_inf = pd.read_csv("ds1_run_info.csv")

    for runNumber in runList:
        t1_file = os.path.join(proc.t1_data_dir,
                               "t1_run{}.h5".format(runNumber))
        df = pd.read_hdf(t1_file, key="ORGretina4MWaveformDecoder")
        g4 = dl.Gretina4MDecoder(t1_file)

        chanList = np.unique(df["channel"])
        chanList = [580]

        pz_fun = []
        masses = []
        resolutions = []

        for chan in chanList:
            print("Channel {}".format(chan))

            try:
                ds_inf_det = ds_inf[(ds_inf.LG == chan) | (ds_inf.HG == chan)]
                det_mass = ds_inf_det.iloc[0].Mass
                det_res = ds_inf_det.iloc[0].Resolution
                det_ctres = ds_inf_det.iloc[0].ct_resolution
                trap_factor = (det_res - det_ctres) / det_ctres
            except IndexError:
                print("...couldn't find channel info")

            if chan % 2 == 1: continue
            if not is_mj(chan): continue

            plt.clf()
            ax1 = plt.subplot(2, 2, 2)
            ax2 = plt.subplot(2, 2, 4)
            ax3 = plt.subplot(2, 2, 3)
            ax4 = plt.subplot(2, 2, 1)

            df_chan = df[(df.channel == chan) & (df.energy > 0.2E9)]

            e_min = df_chan.energy.min()
            e_max = df_chan.energy.max()

            e_cut = 0.9 * (e_max - e_min) + e_min

            df_cut = df_chan[df_chan.energy > e_cut]

            bl_idx = 800
            baseline = np.zeros(bl_idx)
            flat_top = np.zeros(800)

            # plt.figure()
            num_wfs = 0
            for i, (index, row) in enumerate(df_cut.iterrows()):
                wf = g4.parse_event_data(row)
                wf_dat = wf.data - np.mean(wf.data[:bl_idx])

                try:
                    wf_corr, energy, gof = fit_tail(wf_dat)

                    align_idx = np.argmax(wf_corr / energy > 0.999) + 20

                    flat_top_wf = wf_corr[align_idx:align_idx + 800] - energy

                    baseline += wf_dat[:bl_idx]
                    flat_top += flat_top_wf
                    num_wfs += 1

                except ValueError as e:
                    print(e)
                    continue

                ax1.plot(wf_corr[:800], c="b", alpha=0.1)
                ax2.plot(flat_top_wf, c="b", alpha=0.1)
                ax4.plot(wf_corr[align_idx - 400:align_idx + 805] / energy,
                         c="b",
                         alpha=0.1)

                # plt.plot(flat_top_wf, c="b", alpha=0.1)

            # if num_wfs < 5: continue

            flat_top /= num_wfs
            baseline /= num_wfs

            pz_fun.append(np.sum(flat_top**2))
            masses.append(det_res)

            ax1.set_title("Baseline")
            ax1.plot(baseline, c="r")

            ax2.set_title("Decay (PZ corrected)")
            ax2.plot(flat_top, c="r")
            # plt.plot(flat_top, c="r")

            plt.title("Channel {} (mass {}, res {})".format(
                chan, det_mass, det_res))
            # ax1.plot(baseline, label="baseline")
            # ax1.plot(flat_top - np.mean(flat_top), label="flat top")
            xf, power = signal.periodogram(baseline,
                                           fs=1E8,
                                           detrend="linear",
                                           scaling="spectrum")

            x_idx = np.argmax(xf > 0.2E7)
            ax3.semilogx(xf[x_idx:], power[x_idx:], label="baseline")
            max_pwr = power.max()
            # ax2.plot(flat_top)
            xf, power = signal.periodogram(flat_top,
                                           fs=1E8,
                                           detrend="constant",
                                           scaling="spectrum")
            x_idx = np.argmax(xf > 0.2E7)
            ax3.semilogx(xf[x_idx:], power[x_idx:], label="flat top")

            ax3.legend()

            plt.savefig("fft_plots/channel{}_fft.png".format(chan))

            # inp = input("q to continue, else to quit")
            # if inp == "q": exit()
        plt.figure()
        plt.scatter(masses, pz_fun)
        inp = input("q to continue, else to quit")
        if inp == "q": exit()