コード例 #1
0
    def datum(self, datum):
        '''Set this point's datum I{without conversion}.

           @arg datum: New spherical datum (L{Datum}, L{Ellipsoid},
                       L{Ellipsoid2}, L{a_f2Tuple}) or C{scalar}
                       earth radius).

           @raise TypeError: If B{C{datum}} invalid or not
                             not spherical.
        '''
        d = _spherical_datum(datum, name=self.name, raiser=True)
        self._update(d != self._datum)
        self._datum = d
コード例 #2
0
ファイル: azimuthal.py プロジェクト: rbpdqdat/PyGeodesy
    def __init__(self, lat0, lon0, datum=None, name=NN):
        '''New azimuthal projection.

           @arg lat0: Latitude of the center point (C{degrees90}).
           @arg lon0: Longitude of the center point (C{degrees180}).
           @kwarg datum: Optional datum or ellipsoid (L{Datum}, L{Ellipsoid},
                         L{Ellipsoid2} or L{a_f2Tuple}) or I{scalar} earth
                         radius (C{meter}).
           @kwarg name: Optional name for the projection (C{str}).

           @raise AzimuthalError: Invalid B{C{lat0}}, B{C{lon0}} or spherical B{C{datum}}.

           @raise TypeError: Invalid B{C{datum}}.
       '''
        if name:
            self.name = name

        if datum not in (None, self._datum):
            self._datum = _spherical_datum(datum, name=name)

        self.reset(lat0, lon0)
コード例 #3
0
    def __init__(self, lat, lon, height=0, datum=None, name=NN):
        '''Create a spherical C{LatLon} point frome the given
           lat-, longitude and height on the given datum.

           @arg lat: Latitude (C{degrees} or DMS C{[N|S]}).
           @arg lon: Longitude (C{degrees} or DMS C{str[E|W]}).
           @kwarg height: Optional elevation (C{meter}, the same units
                          as the datum's half-axes).
           @kwarg datum: Optional, spherical datum to use (L{Datum},
                         L{Ellipsoid}, L{Ellipsoid2}, L{a_f2Tuple})
                         or C{scalar} earth radius).
           @kwarg name: Optional name (string).

           @raise TypeError: If B{C{datum}} invalid or not
                             not spherical.

           @example:

           >>> p = LatLon(51.4778, -0.0016)  # height=0, datum=Datums.WGS84
        '''
        LatLonBase.__init__(self, lat, lon, height=height, name=name)
        if datum not in (None, self.datum):
            self._datum = _spherical_datum(datum, name=self.name, raiser=True)
コード例 #4
0
def intersections2(lat1, lon1, radius1,
                   lat2, lon2, radius2, datum=None, wrap=True):
    '''Conveniently compute the intersections of two circles each defined
       by (geodetic/-centric) center point and a radius, using either ...

       1) L{vector3d.intersections2} for small distances or if no B{C{datum}}
       is specified, or ...

       2) L{sphericalTrigonometry.intersections2} for a spherical B{C{datum}}
       or if B{C{datum}} is a C{scalar} representing the earth radius, or ...

       3) L{ellipsoidalKarney.intersections2} for an ellipsoidal B{C{datum}}
       and if I{Karney}'s U{geographiclib<https://PyPI.org/project/geographiclib/>}
       is installed, or ...

       4) L{ellipsoidalVincenty.intersections2} if B{C{datum}} is ellipsoidal
       otherwise.

       @arg lat1: Latitude of the first circle center (C{degrees}).
       @arg lon1: Longitude of the first circle center (C{degrees}).
       @arg radius1: Radius of the first circle (C{meter}, conventionally).
       @arg lat2: Latitude of the second circle center (C{degrees}).
       @arg lon2: Longitude of the second circle center (C{degrees}).
       @arg radius2: Radius of the second circle (C{meter}, same units as B{C{radius1}}).
       @kwarg datum: Optional ellipsoidal or spherical datum (L{Datum},
                     L{Ellipsoid}, L{Ellipsoid2}, L{a_f2Tuple} or
                     C{scalar} earth radius in C{meter}, same units as
                     B{C{radius1}} and B{C{radius2}}) or C{None}.
       @kwarg wrap: Wrap and unroll longitudes (C{bool}).

       @return: 2-Tuple of the intersection points, each a
                L{LatLon2Tuple}C{(lat, lon)}.  For abutting circles,
                the intersection points are the same instance.

       @raise IntersectionError: Concentric, antipodal, invalid or
                                 non-intersecting circles or no
                                 convergence.

       @raise TypeError: Invalid B{C{datum}}.

       @raise UnitError: Invalid B{C{lat1}}, B{C{lon1}}, B{C{radius1}}
                         B{C{lat2}}, B{C{lon2}} or B{C{radius2}}.
    '''
    if datum is None or euclidean(lat1, lon1, lat1, lon2, radius=R_M,
                                  adjust=True, wrap=wrap) < _D_I2_:
        import pygeodesy.vector3d as m

        def _V2T(x, y, _, **unused):  # _ == z unused
            return _xnamed(LatLon2Tuple(y, x), intersections2.__name__)

        r1 = m2degrees(Radius_(radius1=radius1), radius=R_M, lat=lat1)
        r2 = m2degrees(Radius_(radius2=radius2), radius=R_M, lat=lat2)

        _, lon2 = unroll180(lon1, lon2, wrap=wrap)
        t = m.intersections2(m.Vector3d(lon1, lat1, 0), r1,
                             m.Vector3d(lon2, lat2, 0), r2, sphere=False,
                               Vector=_V2T)

    else:
        def _LL2T(lat, lon, **unused):
            return _xnamed(LatLon2Tuple(lat, lon), intersections2.__name__)

        d = _spherical_datum(datum, name=intersections2.__name__)
        if d.isSpherical:
            import pygeodesy.sphericalTrigonometry as m
        elif d.isEllipsoidal:
            try:
                if d.ellipsoid.geodesic:
                    pass
                import pygeodesy.ellipsoidalKarney as m
            except ImportError:
                import pygeodesy.ellipsoidalVincenty as m
        else:
            raise _AssertionError(datum=d)

        t = m.intersections2(m.LatLon(lat1, lon1, datum=d), radius1,
                             m.LatLon(lat2, lon2, datum=d), radius2, wrap=wrap,
                               LatLon=_LL2T, height=0)
    return t