def antipode(self, height=None): '''Return the antipode, the point diametrically opposite to this point. @keyword height: Optional height of the antipode, height of this point otherwise (C{meter}). @return: The antipodal point (C{LatLon}). ''' a, b = antipode(self.lat, self.lon) # PYCHOK LatLon2Tuple h = self.height if height is None else height return self.classof(a, b, height=h)
def intersection(start1, end1, start2, end2, height=None, wrap=False, LatLon=LatLon): '''Compute the intersection point of two paths both defined by two points or a start point and bearing from North. @param start1: Start point of the first path (L{LatLon}). @param end1: End point ofthe first path (L{LatLon}) or the initial bearing at the first start point (compass C{degrees360}). @param start2: Start point of the second path (L{LatLon}). @param end2: End point of the second path (L{LatLon}) or the initial bearing at the second start point (compass C{degrees360}). @keyword height: Optional height for the intersection point, overriding the mean height (C{meter}). @keyword wrap: Wrap and unroll longitudes (C{bool}). @keyword LatLon: Optional (sub-)class to return the intersection point (L{LatLon}) or C{None}. @return: The intersection point (B{C{LatLon}}) or a L{LatLon3Tuple}C{(lat, lon, height)} if B{C{LatLon}} is C{None}. An alternate intersection point might be the L{antipode} to the returned result. @raise TypeError: A B{C{start}} or B{C{end}} point not L{LatLon}. @raise ValueError: Intersection is ambiguous or infinite or the paths are parallel, coincident or null. @example: >>> p = LatLon(51.8853, 0.2545) >>> s = LatLon(49.0034, 2.5735) >>> i = intersection(p, 108.547, s, 32.435) # '50.9078°N, 004.5084°E' ''' _Trll.others(start1, name='start1') _Trll.others(start2, name='start2') hs = [start1.height, start2. height] a1, b1 = start1.to2ab() a2, b2 = start2.to2ab() db, b2 = unrollPI(b1, b2, wrap=wrap) r12 = haversine_(a2, a1, db) if abs(r12) < EPS: # [nearly] coincident points a, b = map1(degrees, favg(a1, a2), favg(b1, b2)) # see <https://www.EdWilliams.org/avform.htm#Intersection> elif isscalar(end1) and isscalar(end2): # both bearings sa1, ca1, sa2, ca2, sr12, cr12 = sincos2(a1, a2, r12) x1, x2 = (sr12 * ca1), (sr12 * ca2) if abs(x1) < EPS or abs(x2) < EPS: raise ValueError('intersection %s: %r vs %r' % ('parallel', (start1, end1), (start2, end2))) # handle domain error for equivalent longitudes, # see also functions asin_safe and acos_safe at # <https://www.EdWilliams.org/avform.htm#Math> t1, t2 = map1(acos1, (sa2 - sa1 * cr12) / x1, (sa1 - sa2 * cr12) / x2) if sin(db) > 0: t12, t21 = t1, PI2 - t2 else: t12, t21 = PI2 - t1, t2 t13, t23 = map1(radiansPI2, end1, end2) x1, x2 = map1(wrapPI, t13 - t12, # angle 2-1-3 t21 - t23) # angle 1-2-3 sx1, cx1, sx2, cx2 = sincos2(x1, x2) if sx1 == 0 and sx2 == 0: # max(abs(sx1), abs(sx2)) < EPS raise ValueError('intersection %s: %r vs %r' % ('infinite', (start1, end1), (start2, end2))) sx3 = sx1 * sx2 # if sx3 < 0: # raise ValueError('intersection %s: %r vs %r' % ('ambiguous', # (start1, end1), (start2, end2))) x3 = acos1(cr12 * sx3 - cx2 * cx1) r13 = atan2(sr12 * sx3, cx2 + cx1 * cos(x3)) a, b = _destination2(a1, b1, r13, t13) # choose antipode for opposing bearings if _xb(a1, b1, end1, a, b, wrap) < 0 or \ _xb(a2, b2, end2, a, b, wrap) < 0: a, b = antipode(a, b) else: # end point(s) or bearing(s) x1, d1 = _x3d2(start1, end1, wrap, '1', hs) x2, d2 = _x3d2(start2, end2, wrap, '2', hs) x = x1.cross(x2) if x.length < EPS: # [nearly] colinear or parallel paths raise ValueError('intersection %s: %r vs %r' % ('colinear', (start1, end1), (start2, end2))) a, b = x.to2ll() # choose intersection similar to sphericalNvector d1 = _xdot(d1, a1, b1, a, b, wrap) d2 = _xdot(d2, a2, b2, a, b, wrap) if (d1 < 0 and d2 > 0) or (d1 > 0 and d2 < 0): a, b = antipode(a, b) h = fmean(hs) if height is None else height r = LatLon3Tuple(a, b, h) if LatLon is None else \ LatLon(a, b, height=h) return _xnamed(r, intersection.__name__)