コード例 #1
0
    def antipode(self, height=None):
        '''Return the antipode, the point diametrically opposite
           to this point.

           @keyword height: Optional height of the antipode, height
                            of this point otherwise (C{meter}).

           @return: The antipodal point (C{LatLon}).
        '''
        a, b = antipode(self.lat, self.lon)  # PYCHOK LatLon2Tuple
        h = self.height if height is None else height
        return self.classof(a, b, height=h)
コード例 #2
0
def intersection(start1, end1, start2, end2,
                 height=None, wrap=False, LatLon=LatLon):
    '''Compute the intersection point of two paths both defined
       by two points or a start point and bearing from North.

       @param start1: Start point of the first path (L{LatLon}).
       @param end1: End point ofthe first path (L{LatLon}) or
                    the initial bearing at the first start point
                    (compass C{degrees360}).
       @param start2: Start point of the second path (L{LatLon}).
       @param end2: End point of the second path (L{LatLon}) or
                    the initial bearing at the second start point
                    (compass C{degrees360}).
       @keyword height: Optional height for the intersection point,
                        overriding the mean height (C{meter}).
       @keyword wrap: Wrap and unroll longitudes (C{bool}).
       @keyword LatLon: Optional (sub-)class to return the intersection
                        point (L{LatLon}) or C{None}.

       @return: The intersection point (B{C{LatLon}}) or a
                L{LatLon3Tuple}C{(lat, lon, height)} if B{C{LatLon}}
                is C{None}.  An alternate intersection point might
                be the L{antipode} to the returned result.

       @raise TypeError: A B{C{start}} or B{C{end}} point not L{LatLon}.

       @raise ValueError: Intersection is ambiguous or infinite or
                          the paths are parallel, coincident or null.

       @example:

       >>> p = LatLon(51.8853, 0.2545)
       >>> s = LatLon(49.0034, 2.5735)
       >>> i = intersection(p, 108.547, s, 32.435)  # '50.9078°N, 004.5084°E'
    '''
    _Trll.others(start1, name='start1')
    _Trll.others(start2, name='start2')

    hs = [start1.height, start2. height]

    a1, b1 = start1.to2ab()
    a2, b2 = start2.to2ab()

    db, b2 = unrollPI(b1, b2, wrap=wrap)
    r12 = haversine_(a2, a1, db)
    if abs(r12) < EPS:  # [nearly] coincident points
        a, b = map1(degrees, favg(a1, a2), favg(b1, b2))

    # see <https://www.EdWilliams.org/avform.htm#Intersection>
    elif isscalar(end1) and isscalar(end2):  # both bearings
        sa1, ca1, sa2, ca2, sr12, cr12 = sincos2(a1, a2, r12)

        x1, x2 = (sr12 * ca1), (sr12 * ca2)
        if abs(x1) < EPS or abs(x2) < EPS:
            raise ValueError('intersection %s: %r vs %r' % ('parallel',
                             (start1, end1), (start2, end2)))

        # handle domain error for equivalent longitudes,
        # see also functions asin_safe and acos_safe at
        # <https://www.EdWilliams.org/avform.htm#Math>
        t1, t2 = map1(acos1, (sa2 - sa1 * cr12) / x1,
                             (sa1 - sa2 * cr12) / x2)
        if sin(db) > 0:
            t12, t21 = t1, PI2 - t2
        else:
            t12, t21 = PI2 - t1, t2

        t13, t23 = map1(radiansPI2, end1, end2)
        x1, x2 = map1(wrapPI, t13 - t12,  # angle 2-1-3
                              t21 - t23)  # angle 1-2-3
        sx1, cx1, sx2, cx2 = sincos2(x1, x2)
        if sx1 == 0 and sx2 == 0:  # max(abs(sx1), abs(sx2)) < EPS
            raise ValueError('intersection %s: %r vs %r' % ('infinite',
                             (start1, end1), (start2, end2)))
        sx3 = sx1 * sx2
#       if sx3 < 0:
#           raise ValueError('intersection %s: %r vs %r' % ('ambiguous',
#                            (start1, end1), (start2, end2)))
        x3 = acos1(cr12 * sx3 - cx2 * cx1)
        r13 = atan2(sr12 * sx3, cx2 + cx1 * cos(x3))

        a, b = _destination2(a1, b1, r13, t13)
        # choose antipode for opposing bearings
        if _xb(a1, b1, end1, a, b, wrap) < 0 or \
           _xb(a2, b2, end2, a, b, wrap) < 0:
            a, b = antipode(a, b)

    else:  # end point(s) or bearing(s)
        x1, d1 = _x3d2(start1, end1, wrap, '1', hs)
        x2, d2 = _x3d2(start2, end2, wrap, '2', hs)
        x = x1.cross(x2)
        if x.length < EPS:  # [nearly] colinear or parallel paths
            raise ValueError('intersection %s: %r vs %r' % ('colinear',
                             (start1, end1), (start2, end2)))
        a, b = x.to2ll()
        # choose intersection similar to sphericalNvector
        d1 = _xdot(d1, a1, b1, a, b, wrap)
        d2 = _xdot(d2, a2, b2, a, b, wrap)
        if (d1 < 0 and d2 > 0) or (d1 > 0 and d2 < 0):
            a, b = antipode(a, b)

    h = fmean(hs) if height is None else height
    r = LatLon3Tuple(a, b, h) if LatLon is None else \
              LatLon(a, b, height=h)
    return _xnamed(r, intersection.__name__)