コード例 #1
0
    def distanceTo(self, other, radius=R_M, wrap=False):
        '''Compute the distance from this to an other point.

           @arg other: The other point (L{LatLon}).
           @kwarg radius: Mean earth radius (C{meter}).
           @kwarg wrap: Wrap and unroll longitudes (C{bool}).

           @return: Distance between this and the B{C{other}} point
                    (C{meter}, same units as B{C{radius}}).

           @raise TypeError: The B{C{other}} point is not L{LatLon}.

           @raise ValueError: Invalid B{C{radius}}.

           @example:

           >>> p1 = LatLon(52.205, 0.119)
           >>> p2 = LatLon(48.857, 2.351);
           >>> d = p1.distanceTo(p2)  # 404300
        '''
        self.others(other)

        a1, b1 = self.philam
        a2, b2 = other.philam

        db, _ = unrollPI(b1, b2, wrap=wrap)
        r = vincentys_(a2, a1, db)
        return r * Radius(radius)
コード例 #2
0
 def _rads(n, points, closed):  # angular edge lengths in radians
     i, m = _imdex2(closed, n)
     a1, b1 = points[i].philam
     for i in range(m, n):
         a2, b2 = points[i].philam
         db, b2 = unrollPI(b1, b2, wrap=wrap)
         yield vincentys_(a2, a1, db)
         a1, b1 = a2, b2
コード例 #3
0
    def intermediateTo(self, other, fraction, height=None, wrap=False):
        '''Locate the point at given fraction between this and an
           other point.

           @arg other: The other point (L{LatLon}).
           @arg fraction: Fraction between both points (float, between
                          0.0 for this and 1.0 for the other point).
           @kwarg height: Optional height, overriding the fractional
                          height (C{meter}).
           @kwarg wrap: Wrap and unroll longitudes (C{bool}).

           @return: Intermediate point (L{LatLon}).

           @raise TypeError: The B{C{other}} point is not L{LatLon}.

           @raise ValueError: Invalid B{C{fraction}} or B{C{height}}.

           @example:

           >>> p1 = LatLon(52.205, 0.119)
           >>> p2 = LatLon(48.857, 2.351)
           >>> p = p1.intermediateTo(p2, 0.25)  # 51.3721°N, 000.7073°E

           @JSname: I{intermediatePointTo}.
        '''
        self.others(other)

        f = Scalar(fraction, name=_fraction_)

        a1, b1 = self.philam
        a2, b2 = other.philam

        db, b2 = unrollPI(b1, b2, wrap=wrap)
        r = vincentys_(a2, a1, db)
        sr = sin(r)
        if abs(sr) > EPS:
            sa1, ca1, sa2, ca2, \
            sb1, cb1, sb2, cb2 = sincos2(a1, a2, b1, b2)

            A = sin((1 - f) * r) / sr
            B = sin(f * r) / sr

            x = A * ca1 * cb1 + B * ca2 * cb2
            y = A * ca1 * sb1 + B * ca2 * sb2
            z = A * sa1 + B * sa2

            a = atan2(z, hypot(x, y))
            b = atan2(y, x)

        else:  # points too close
            a = favg(a1, a2, f=f)
            b = favg(b1, b2, f=f)

        if height is None:
            h = self._havg(other, f=f)
        else:
            h = Height(height)
        return self.classof(degrees90(a), degrees180(b), height=h)
コード例 #4
0
def _intersects2(c1, rad1, c2, rad2, radius=R_M,  # in .ellipsoidalBase._intersects2
                                     height=None, wrap=True, too_d=None,
                                     LatLon=LatLon, **LatLon_kwds):
    # (INTERNAL) Intersect two spherical circles, see L{intersections2}
    # above, separated to allow callers to embellish any exceptions

    def _dest3(bearing, h):
        a, b = _destination2(a1, b1, r1, bearing)
        return _latlon3(degrees90(a), degrees180(b), h,
                        intersections2, LatLon, **LatLon_kwds)

    r1, r2, f = _rads3(rad1, rad2, radius)
    if f:  # swapped
        c1, c2 = c2, c1  # PYCHOK swap

    a1, b1 = c1.philam
    a2, b2 = c2.philam

    db, b2 = unrollPI(b1, b2, wrap=wrap)
    d = vincentys_(a2, a1, db)  # radians
    if d < max(r1 - r2, EPS):
        raise ValueError(_near_concentric_)

    x = fsum_(r1, r2, -d)  # overlap
    if x > EPS:
        sd, cd, sr1, cr1, _, cr2 = sincos2(d, r1, r2)
        x = sd * sr1
        if abs(x) < EPS:
            raise ValueError(_invalid_)
        x = acos1((cr2 - cd * cr1) / x)  # 0 <= x <= PI

    elif x < 0:
        t = (d * radius) if too_d is None else too_d
        raise ValueError(_too_distant_fmt_ % (t,))

    if height is None:  # "radical height"
        f = _radical2(d, r1, r2).ratio
        h = Height(favg(c1.height, c2.height, f=f))
    else:
        h = Height(height)

    b = bearing_(a1, b1, a2, b2, final=False, wrap=wrap)
    if x < _EPS_I2:  # externally ...
        r = _dest3(b, h)
    elif x > _PI_EPS_I2:  # internally ...
        r = _dest3(b + PI, h)
    else:
        return _dest3(b + x, h), _dest3(b - x, h)
    return r, r  # ... abutting circles
コード例 #5
0
 def distance(self, p1, p2):
     '''Return the L{vincentys_} distance in C{radians}.
     '''
     r, _ = unrollPI(p1.lam, p2.lam, wrap=self._wrap)
     return vincentys_(p2.phi, p1.phi, r)
コード例 #6
0
ファイル: heights.py プロジェクト: tranngocphu/PyGeodesy
 def _distances(self, x, y):  # (x, y) radians
     for xk, yk in zip(self._xs, self._ys):
         d, _ = unrollPI(xk, x, wrap=self._wrap)
         yield vincentys_(yk, y, d)
コード例 #7
0
ファイル: hausdorff.py プロジェクト: tranngocphu/PyGeodesy
 def distance(self, p1, p2):
     '''Return the L{vincentys_} distance in C{radians}.
     '''
     d, _ = unrollPI(p1.b, p2.b, wrap=self._wrap)
     return vincentys_(p2.a, p1.a, d)
コード例 #8
0
def intersections2(
        center1,
        rad1,
        center2,
        rad2,
        radius=R_M,  # MCCABE 13
        height=None,
        wrap=False,
        LatLon=LatLon,
        **LatLon_kwds):
    '''Compute the intersection points of two circles each defined
       by a center point and radius.

       @arg center1: Center of the first circle (L{LatLon}).
       @arg rad1: Radius of the second circle (C{meter} or C{radians},
                  see B{C{radius}}).
       @arg center2: Center of the second circle (L{LatLon}).
       @arg rad2: Radius of the second circle (C{meter} or C{radians},
                  see B{C{radius}}).
       @kwarg radius: Mean earth radius (C{meter} or C{None} if both
                      B{C{rad1}} and B{C{rad2}} are given in C{radians}).
       @kwarg height: Optional height for the intersection point,
                      overriding the mean height (C{meter}).
       @kwarg wrap: Wrap and unroll longitudes (C{bool}).
       @kwarg LatLon: Optional class to return the intersection
                      points (L{LatLon}) or C{None}.
       @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
                           arguments, ignored if B{C{LatLon=None}}.

       @return: 2-Tuple of the intersection points, each a B{C{LatLon}}
                instance or L{LatLon3Tuple}C{(lat, lon, height)} if
                B{C{LatLon}} is C{None}.  The intersection points are
                the same instance for abutting circles.

       @raise IntersectionError: Concentric, antipodal, invalid or
                                 non-intersecting circles.

       @raise TypeError: If B{C{center1}} or B{C{center2}} not L{LatLon}.

       @raise ValueError: Invalid B{C{rad1}}, B{C{rad2}}, B{C{radius}} or
                          B{C{height}}.

       @note: Courtesy U{Samuel Čavoj<https://GitHub.com/mrJean1/PyGeodesy/issues/41>}.

       @see: This U{Answer<https://StackOverflow.com/questions/53324667/
             find-intersection-coordinates-of-two-circles-on-earth/53331953>}.
    '''
    def _destination1(bearing):
        a, b = _destination2(a1, b1, r1, bearing)
        return _latlon3(degrees90(a), degrees180(b), h, intersections2, LatLon,
                        **LatLon_kwds)

    _Trll.others(center1, name='center1')
    _Trll.others(center2, name='center2')

    a1, b1 = center1.philam
    a2, b2 = center2.philam
    r1, r2, x = _rads3(rad1, rad2, radius)
    if x:
        a1, b1, a2, b2 = a2, b2, a1, b1

    db, _ = unrollPI(b1, b2, wrap=wrap)
    d = vincentys_(a2, a1, db)  # radians
    if d < max(r1 - r2, EPS):
        raise IntersectionError(center1=center1,
                                rad1=rad1,
                                center2=center2,
                                rad2=rad2,
                                txt=_near_concentric_)

    x = fsum_(r1, r2, -d)
    if x > EPS:
        try:
            sd, cd, s1, c1, _, c2 = sincos2(d, r1, r2)
            x = sd * s1
            if abs(x) < EPS:
                raise ValueError
            x = acos1((c2 - cd * c1) / x)
        except ValueError:
            raise IntersectionError(center1=center1,
                                    rad1=rad1,
                                    center2=center2,
                                    rad2=rad2)
    elif x < 0:
        raise IntersectionError(center1=center1,
                                rad1=rad1,
                                center2=center2,
                                rad2=rad2,
                                txt=_too_distant_)

    b = bearing_(a1, b1, a2, b2, final=False, wrap=wrap)
    if height is None:
        h = fmean((center1.height, center2.height))
    else:
        Height(height)
    if abs(x) > EPS:
        return _destination1(b + x), _destination1(b - x)
    else:  # abutting circles
        x = _destination1(b)
        return x, x
コード例 #9
0
def intersection(start1,
                 end1,
                 start2,
                 end2,
                 height=None,
                 wrap=False,
                 LatLon=LatLon,
                 **LatLon_kwds):
    '''Compute the intersection point of two paths both defined
       by two points or a start point and bearing from North.

       @arg start1: Start point of the first path (L{LatLon}).
       @arg end1: End point ofthe first path (L{LatLon}) or
                  the initial bearing at the first start point
                  (compass C{degrees360}).
       @arg start2: Start point of the second path (L{LatLon}).
       @arg end2: End point of the second path (L{LatLon}) or
                  the initial bearing at the second start point
                  (compass C{degrees360}).
       @kwarg height: Optional height for the intersection point,
                      overriding the mean height (C{meter}).
       @kwarg wrap: Wrap and unroll longitudes (C{bool}).
       @kwarg LatLon: Optional class to return the intersection
                      point (L{LatLon}) or C{None}.
       @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
                           arguments, ignored if B{C{LatLon=None}}.

       @return: The intersection point (B{C{LatLon}}) or a
                L{LatLon3Tuple}C{(lat, lon, height)} if B{C{LatLon}}
                is C{None}.  An alternate intersection point might
                be the L{antipode} to the returned result.

       @raise IntersectionError: Intersection is ambiguous or infinite
                                 or the paths are coincident, colinear
                                 or parallel.

       @raise TypeError: A B{C{start}} or B{C{end}} point not L{LatLon}.

       @raise ValueError: Invalid B{C{height}}.

       @example:

       >>> p = LatLon(51.8853, 0.2545)
       >>> s = LatLon(49.0034, 2.5735)
       >>> i = intersection(p, 108.547, s, 32.435)  # '50.9078°N, 004.5084°E'
    '''
    _Trll.others(start1, name=_start1_)
    _Trll.others(start2, name=_start2_)

    hs = [start1.height, start2.height]

    a1, b1 = start1.philam
    a2, b2 = start2.philam

    db, b2 = unrollPI(b1, b2, wrap=wrap)
    r12 = vincentys_(a2, a1, db)
    if abs(r12) < EPS:  # [nearly] coincident points
        a, b = favg(a1, a2), favg(b1, b2)

    # see <https://www.EdWilliams.org/avform.htm#Intersection>
    elif isscalar(end1) and isscalar(end2):  # both bearings
        sa1, ca1, sa2, ca2, sr12, cr12 = sincos2(a1, a2, r12)

        x1, x2 = (sr12 * ca1), (sr12 * ca2)
        if abs(x1) < EPS or abs(x2) < EPS:
            raise IntersectionError(start1=start1,
                                    end1=end1,
                                    start2=start2,
                                    end2=end2,
                                    txt='parallel')

        # handle domain error for equivalent longitudes,
        # see also functions asin_safe and acos_safe at
        # <https://www.EdWilliams.org/avform.htm#Math>
        t1, t2 = map1(acos1, (sa2 - sa1 * cr12) / x1, (sa1 - sa2 * cr12) / x2)
        if sin(db) > 0:
            t12, t21 = t1, PI2 - t2
        else:
            t12, t21 = PI2 - t1, t2

        t13, t23 = map1(radiansPI2, end1, end2)
        x1, x2 = map1(
            wrapPI,
            t13 - t12,  # angle 2-1-3
            t21 - t23)  # angle 1-2-3
        sx1, cx1, sx2, cx2 = sincos2(x1, x2)
        if sx1 == 0 and sx2 == 0:  # max(abs(sx1), abs(sx2)) < EPS
            raise IntersectionError(start1=start1,
                                    end1=end1,
                                    start2=start2,
                                    end2=end2,
                                    txt='infinite')
        sx3 = sx1 * sx2
        #       if sx3 < 0:
        #           raise IntersectionError(start1=start1, end1=end1,
        #                                   start2=start2, end2=end2, txt=_ambiguous_)
        x3 = acos1(cr12 * sx3 - cx2 * cx1)
        r13 = atan2(sr12 * sx3, cx2 + cx1 * cos(x3))

        a, b = _destination2(a1, b1, r13, t13)
        # choose antipode for opposing bearings
        if _xb(a1, b1, end1, a, b, wrap) < 0 or \
           _xb(a2, b2, end2, a, b, wrap) < 0:
            a, b = antipode_(a, b)  # PYCHOK PhiLam2Tuple

    else:  # end point(s) or bearing(s)
        x1, d1 = _x3d2(start1, end1, wrap, _1_, hs)
        x2, d2 = _x3d2(start2, end2, wrap, _2_, hs)
        x = x1.cross(x2)
        if x.length < EPS:  # [nearly] colinear or parallel paths
            raise IntersectionError(start1=start1,
                                    end1=end1,
                                    start2=start2,
                                    end2=end2,
                                    txt=_colinear_)
        a, b = x.philam
        # choose intersection similar to sphericalNvector
        d1 = _xdot(d1, a1, b1, a, b, wrap)
        if d1:
            d2 = _xdot(d2, a2, b2, a, b, wrap)
            if (d2 < 0 and d1 > 0) or (d2 > 0 and d1 < 0):
                a, b = antipode_(a, b)  # PYCHOK PhiLam2Tuple

    h = fmean(hs) if height is None else Height(height)
    return _latlon3(degrees90(a), degrees180(b), h, intersection, LatLon,
                    **LatLon_kwds)