コード例 #1
0
    def get_slr(self):
        """Extract SLR for any geometries that overlap bounds where SLR is available

        Returns
        -------
        dict
            {"slr_acres": <acres>, "slr": [<slr_0ft>, <slr_1ft>, ..., <slr_6ft>]}
        """
        slr_bounds = gp.read_feather(
            slr_bounds_filename).geometry.values.data[0]
        ix = pg.intersects(self.geometry, slr_bounds)

        if not ix.sum():
            # No overlap
            return None

        # only extract SLR where there are overlaps
        slr_results = extract_slr_by_geometry(self.shapes[ix],
                                              bounds=pg.total_bounds(
                                                  self.geometry[ix]))
        # None only if no shape mask
        if slr_results is None:
            return None

        slr = [slr_results[i] for i in range(7)]

        return {"slr_acres": slr_results["shape_mask"], "slr": slr}
コード例 #2
0
ファイル: alpha_shapes.py プロジェクト: pysal/libpysal
def _valid_hull(geoms, points):
    """Sanity check within ``alpha_shape_auto()`` to verify the generated alpha
    shape actually contains the original set of points (xys).

    Parameters
    ----------

    geoms : GeoSeries
        See alpha_geoms()

    points : list
        xys parameter cast as shapely.geometry.Point objects

    Returns
    -------

    flag : bool
        Valid hull for alpha shape [True] or not [False]

    """
    flag = True
    # if there is not exactly one polygon
    if geoms.shape[0] != 1:
        return False
    # if any (xys) points do not intersect the polygon
    if HAS_PYGEOS:
        return pygeos.intersects(pygeos.from_shapely(geoms[0]), points).all()
    else:
        for point in points:
            if not point.intersects(geoms[0]):
                return False
        return True
コード例 #3
0
    def get_slr(self):
        slr_bounds = gp.read_feather(
            slr_bounds_filename).geometry.values.data[0]
        ix = pg.intersects(self.geometry, slr_bounds)

        if not ix.sum():
            # No overlap
            return None

        # only extract SLR where there are overlaps
        slr_results = extract_slr_by_geometry(self.shapes[ix],
                                              bounds=pg.total_bounds(
                                                  self.geometry[ix]))
        # None only if no shape mask
        if slr_results is None:
            return None

        slr = [slr_results[i] for i in range(7)]

        return {"slr_acres": slr_results["shape_mask"], "slr": slr}
    def _pandas(cls, column, **kwargs):

        shape = kwargs.get("shape")
        shape_format = kwargs.get("shape_format")
        column_shape_format = kwargs.get("column_shape_format")

        # Check that shape is given and given in the correct format
        if shape is not None:
            try:
                if shape_format == "wkt":
                    shape_ref = geos.from_wkt(shape)
                elif shape_format == "wkb":
                    shape_ref = geos.from_wkb(shape)
                elif shape_format == "geojson":
                    shape_ref = geos.from_geojson(shape)
                else:
                    raise NotImplementedError(
                        "Shape constructor method not implemented. Must be in WKT, WKB, or GeoJSON format."
                    )
            except:
                raise Exception("A valid reference shape was not given.")
        else:
            raise Exception("A shape must be provided for this method.")

        # Load the column into a pygeos Geometry vector from numpy array (Series not supported).
        if column_shape_format == "wkt":
            shape_test = geos.from_wkt(column.to_numpy(), on_invalid="ignore")
        elif column_shape_format == "wkb":
            shape_test = geos.from_wkb(column.to_numpy(), on_invalid="ignore")
        else:
            raise NotImplementedError(
                "Column values shape format not implemented.")

        # Allow for an array of reference shapes to be provided. Return a union of all the shapes in the array (Polygon or Multipolygon)
        shape_ref = geos.union_all(shape_ref)

        # Prepare the geometries
        geos.prepare(shape_ref)
        geos.prepare(shape_test)

        return pd.Series(geos.intersects(shape_ref, shape_test))
コード例 #5
0
    def get_results(self):
        sa_bnd = gp.read_feather(boundary_filename)

        # if area of interest does not intersect SA boundary, there will be no results
        if not pg.intersects(self.geometry, sa_bnd.geometry.values.data).max():
            return None

        results = {
            "type": "",
            "acres": pg.area(self.geometry).sum() * M2_ACRES,
            "name": self.name,
        }

        blueprint_results = self.get_blueprint()
        if blueprint_results is None:
            return None

        results.update(blueprint_results)

        urban_results = self.get_urban()
        if urban_results is not None:
            results.update(urban_results)

        slr_results = self.get_slr()
        if slr_results is not None:
            results.update(slr_results)

        ownership_results = self.get_ownership()
        if ownership_results is not None:
            results.update(ownership_results)

        county_results = self.get_counties()
        if county_results is not None:
            results.update(county_results)

        parca_results = self.get_parca()
        if parca_results is not None:
            results.update(parca_results)

        return results
コード例 #6
0
    # Now can just reduce dams back to these lineIDs
    dams = (
        dams[["damID", "geometry"]]
        .join(downstreams, on="damID", how="inner")
        .drop_duplicates(subset=["damID", "lineID"])
        .join(flowlines.geometry.rename("flowline"), on="lineID",)
        .reset_index(drop=True)
    )
    print(f"Found {len(dams):,} joins between NHD dams and flowlines")

    ### Extract representative point
    # Look at either end of overlapping line and use that as representative point.
    # Otherwise intersect and extract first coordinate of overlapping line
    last_pt = pg.get_point(dams.flowline.values.data, -1)
    ix = pg.intersects(dams.geometry.values.data, last_pt)
    dams.loc[ix, "pt"] = last_pt[ix]

    # override with upstream most point when both intersect
    first_pt = pg.get_point(dams.flowline.values.data, 0)
    ix = pg.intersects(dams.geometry.values.data, first_pt)
    dams.loc[ix, "pt"] = first_pt[ix]

    ix = dams.pt.isnull()
    # WARNING: this might fail for odd intersection geoms; we always take the first line
    # below
    pt = pd.Series(
        pg.get_point(
            pg.get_geometry(
                pg.intersection(
                    dams.loc[ix].geometry.values.data, dams.loc[ix].flowline.values.data
コード例 #7
0
def find_dam_face_from_waterbody(waterbody, drain_pt):
    total_area = pg.area(waterbody)
    ring = pg.get_exterior_ring(pg.normalize(waterbody))
    total_length = pg.length(ring)
    num_pts = pg.get_num_points(ring) - 1  # drop closing coordinate
    vertices = pg.get_point(ring, range(num_pts))

    ### Extract line segments that are no more than 1/3 coordinates of polygon
    # starting from the vertex nearest the drain
    # note: lower numbers are to the right
    tree = pg.STRtree(vertices)
    ix = tree.nearest(drain_pt)[1][0]
    side_width = min(num_pts // 3, MAX_SIDE_PTS)
    left_ix = ix + side_width
    right_ix = ix - side_width

    # extract these as a left-to-write line;
    pts = vertices[max(right_ix, 0):min(num_pts, left_ix)][::-1]
    if left_ix >= num_pts:
        pts = np.append(vertices[0:left_ix - num_pts][::-1], pts)

    if right_ix < 0:
        pts = np.append(pts, vertices[num_pts + right_ix:num_pts][::-1])

    coords = pg.get_coordinates(pts)

    if len(coords) > 2:
        # first run a simplification process to extract the major shape and bends
        # then run the straight line algorithm
        simp_coords, simp_ix = simplify_vw(
            coords, min(MAX_SIMPLIFY_AREA, total_area / 100))

        if len(simp_coords) > 2:
            keep_coords, ix = extract_straight_segments(
                simp_coords, max_angle=MAX_STRAIGHT_ANGLE, loops=5)
            keep_ix = simp_ix.take(ix)

        else:
            keep_coords = simp_coords
            keep_ix = simp_ix

    else:
        keep_coords = coords
        keep_ix = np.arange(len(coords))

    ### Calculate the length of each run and drop any that are not sufficiently long
    lengths = segment_length(keep_coords)
    ix = (lengths >= MIN_DAM_WIDTH) & (lengths / total_length <
                                       MAX_WIDTH_RATIO)

    pairs = np.dstack([keep_ix[:-1][ix], keep_ix[1:][ix]])[0]

    # since ranges are ragged, we have to do this in a loop instead of vectorized
    segments = []
    for start, end in pairs:
        segments.append(pg.linestrings(coords[start:end + 1]))

    segments = np.array(segments)

    # only keep the segments that are close to the drain
    segments = segments[
        pg.intersects(segments, pg.buffer(drain_pt, MAX_DRAIN_DIST)), ]

    if not len(segments):
        return segments

    # only keep those where the drain is interior to the line
    pos = pg.line_locate_point(segments, drain_pt)
    lengths = pg.length(segments)

    ix = (pos >= MIN_INTERIOR_DIST) & (pos <= (lengths - MIN_INTERIOR_DIST))

    return segments[ix]
コード例 #8
0
ファイル: utils.py プロジェクト: bekerov/cogeo-mosaic
def create_mosaic(
    dataset_list: Tuple,
    minzoom: int = None,
    maxzoom: int = None,
    max_threads: int = 20,
    minimum_tile_cover: float = None,
    tile_cover_sort: bool = False,
    version: str = "0.0.2",
    quiet: bool = True,
) -> Dict:
    """
    Create mosaic definition content.

    Attributes
    ----------
        dataset_list : tuple or list, required
            Dataset urls.
        minzoom: int, optional
            Force mosaic min-zoom.
        maxzoom: int, optional
            Force mosaic max-zoom.
        minimum_tile_cover: float, optional (default: 0)
            Filter files with low tile intersection coverage.
        tile_cover_sort: bool, optional (default: None)
            Sort intersecting files by coverage.
        max_threads : int
            Max threads to use (default: 20).
        version: str, optional
            mosaicJSON definition version
        quiet: bool, optional (default: True)
            Mask processing steps.

    Returns
    -------
        mosaic_definition : dict
            Mosaic definition.

    """
    if version not in ["0.0.1", "0.0.2"]:
        raise Exception(f"Invalid mosaicJSON's version: {version}")

    if not quiet:
        click.echo("Get files footprint", err=True)

    results = get_footprints(dataset_list,
                             max_threads=max_threads,
                             quiet=quiet)

    if minzoom is None:
        minzoom = list(set([feat["properties"]["minzoom"]
                            for feat in results]))
        if len(minzoom) > 1:
            warnings.warn("Multiple MinZoom, Assets different minzoom values",
                          UserWarning)

        minzoom = max(minzoom)

    if maxzoom is None:
        maxzoom = list(set([feat["properties"]["maxzoom"]
                            for feat in results]))
        if len(maxzoom) > 1:
            warnings.warn(
                "Multiple MaxZoom, Assets have multiple resolution values",
                UserWarning)

        maxzoom = max(maxzoom)

    quadkey_zoom = minzoom

    datatype = list(set([feat["properties"]["datatype"] for feat in results]))
    if len(datatype) > 1:
        raise Exception("Dataset should have the same data type")

    if not quiet:
        click.echo(f"Get quadkey list for zoom: {quadkey_zoom}", err=True)

    tiles = burntiles.burn(results, quadkey_zoom)
    tiles = ["{2}-{0}-{1}".format(*tile.tolist()) for tile in tiles]

    bounds = burntiles.find_extrema(results)
    mosaic_definition = dict(
        mosaicjson=version,
        minzoom=minzoom,
        maxzoom=maxzoom,
        bounds=bounds,
        center=[(bounds[0] + bounds[2]) / 2, (bounds[1] + bounds[3]) / 2,
                minzoom],
        tiles={},
        version="1.0.0",
    )

    if version == "0.0.2":
        mosaic_definition.update(dict(quadkey_zoom=quadkey_zoom))

    if not quiet:
        click.echo(f"Feed Quadkey index", err=True)

    dataset_geoms = polygons(
        [feat["geometry"]["coordinates"][0] for feat in results])
    dataset = [{
        "path": f["properties"]["path"],
        "geometry": geom
    } for (f, geom) in zip(results, dataset_geoms)]

    for parent in tiles:
        z, x, y = list(map(int, parent.split("-")))
        parent = mercantile.Tile(x=x, y=y, z=z)
        quad = mercantile.quadkey(*parent)
        tile_geometry = polygons(
            mercantile.feature(parent)["geometry"]["coordinates"][0])
        fdataset = [
            dataset[idx] for idx in numpy.nonzero(
                intersects(tile_geometry, dataset_geoms))[0]
        ]
        if minimum_tile_cover is not None or tile_cover_sort:
            fdataset = _filter_and_sort(
                tile_geometry,
                fdataset,
                minimum_cover=minimum_tile_cover,
                sort_cover=tile_cover_sort,
            )
        if len(fdataset):
            mosaic_definition["tiles"][quad] = [f["path"] for f in fdataset]

    return mosaic_definition
コード例 #9
0
    downstreams = (lines_by_dam.apply(find_downstreams).reset_index().explode(
        "lineID").drop_duplicates().set_index("id").lineID)

    # Now can just reduce dams back to these lineIDs
    dams = (dams[["id", "GNIS_Name", "geometry"]].join(
        downstreams, on="id",
        how="inner").drop_duplicates(subset=["id", "lineID"]).join(
            flowlines.geometry.rename("line"),
            on="lineID").reset_index(drop=True))
    print("Found {:,} joins between NHD dams and flowlines".format(len(dams)))

    ### Extract representative point
    # Look at either end of overlapping line and use that as representative point.
    # Otherwise intersect and extract first coordinate of overlapping line
    first = pg.get_point(dams.line, 0)
    intersects_first = pg.intersects(dams.geometry, first)
    ix = intersects_first
    dams.loc[ix, "pt"] = first.loc[ix]

    ix = ~intersects_first
    last = pg.get_point(dams.loc[ix].line, -1)
    intersects_last = pg.intersects(dams.loc[ix].geometry, last)
    last = last.loc[intersects_last]
    dams.loc[last.index, "pt"] = last

    ix = dams.pt.isnull()
    # WARNING: this might fail for odd intersection geoms
    pt = pg.get_point(
        pg.intersection(dams.loc[ix].geometry, dams.loc[ix].line), 0).dropna()
    dams.loc[pt.index, "pt"] = pt