コード例 #1
0
ファイル: pltlib.py プロジェクト: ShashankBice/imview
def iv(a, ax=None, clim=None, clim_perc=(2,98), cmap='cpt_rainbow', label=None, title=None, \
        ds=None, res=None, hillshade=False, scalebar=True):
    """
    Quick image viewer with standardized display settings
    """
    if ax is None:
        #ax = plt.subplot()
        f, ax = plt.subplots()
    ax.set_aspect('equal')
    if clim is None:
        clim = get_clim(a, clim_perc)
    cm = cmap_setndv(cmap, cmap)
    alpha = 1.0
    if hillshade:
        if ds is not None:
            hs = geolib.gdaldem_mem_ds(ds,
                                       processing='hillshade',
                                       computeEdges=True,
                                       returnma=True)
            b_cm = cmap_setndv('gray', cmap)
            #Set the overlay bad values to completely transparent, otherwise darkens the bg
            cm.set_bad(alpha=0)
            bg_clim_perc = (2, 98)
            bg_clim = get_clim(hs, bg_clim_perc)
            #bg_clim = (1, 255)
            bgplot = ax.imshow(hs, cmap=b_cm, clim=bg_clim)
            alpha = 0.5
    if scalebar:
        if ds is not None:
            #Get resolution at center of dataset
            ccoord = geolib.get_center(ds, t_srs=geolib.wgs_srs)
            #Compute resolution in local cartesian coordinates at center
            c_srs = geolib.localortho(*ccoord)
            res = geolib.get_res(ds, c_srs)[0]
        if res is not None:
            sb_loc = best_scalebar_location(a)
            add_scalebar(ax, res, location=sb_loc)
    imgplot = ax.imshow(a, cmap=cm, clim=clim, alpha=alpha, **imshow_kwargs)
    cbar_kwargs['extend'] = get_cbar_extend(a, clim=clim)
    cbar_kwargs['format'] = get_cbar_format(a)
    cbar = add_cbar(ax, imgplot, label=label)
    hide_ticks(ax)
    if title is not None:
        ax.set_title(title)
    plt.tight_layout()
    return ax
コード例 #2
0
def shift_ll2proj(fn, llz):
    from osgeo import gdal, osr
    from pygeotools.lib import geolib
    ds = gdal.Open(fn)
    s_srs = geolib.wgs_srs
    t_srs = geolib.get_ds_srs(ds)
    shift = None
    if t_srs is not None and not s_srs.IsSame(t_srs):
        #center is lon, lat
        #llz is lat, lon
        c = geolib.get_center(ds, t_srs=s_srs)
        c_shift = [c[0]+llz[1], c[1]+llz[0]]
        ct = osr.CoordinateTransformation(s_srs, t_srs)
        c_proj = list(ct.TransformPoint(*c)[0:2])
        c_shift_proj = list(ct.TransformPoint(*c_shift)[0:2])
        shift = list([c_shift_proj[0] - c_proj[0], c_shift_proj[1] - c_proj[1]])
        shift.append(llz[2])
    return shift
コード例 #3
0
ファイル: dem_align.py プロジェクト: eokeeffe/demcoreg
def main(argv=None):
    parser = getparser()
    args = parser.parse_args()

    #Should check that files exist
    ref_dem_fn = args.ref_fn
    src_dem_fn = args.src_fn

    mode = args.mode
    mask_list = args.mask_list
    max_offset = args.max_offset
    max_dz = args.max_dz
    slope_lim = tuple(args.slope_lim)
    tiltcorr = args.tiltcorr
    polyorder = args.polyorder
    res = args.res

    #Maximum number of iterations
    max_iter = args.max_iter

    #These are tolerances (in meters) to stop iteration
    tol = args.tol
    min_dx = tol
    min_dy = tol
    min_dz = tol

    outdir = args.outdir
    if outdir is None:
        outdir = os.path.splitext(src_dem_fn)[0] + '_dem_align'

    if tiltcorr:
        outdir += '_tiltcorr'
        tiltcorr_done = False
        #Relax tolerance for initial round of co-registration
        #tiltcorr_tol = 0.1
        #if tol < tiltcorr_tol:
        #    tol = tiltcorr_tol

    if not os.path.exists(outdir):
        os.makedirs(outdir)

    outprefix = '%s_%s' % (os.path.splitext(os.path.split(src_dem_fn)[-1])[0], \
            os.path.splitext(os.path.split(ref_dem_fn)[-1])[0])
    outprefix = os.path.join(outdir, outprefix)

    print("\nReference: %s" % ref_dem_fn)
    print("Source: %s" % src_dem_fn)
    print("Mode: %s" % mode)
    print("Output: %s\n" % outprefix)

    src_dem_ds = gdal.Open(src_dem_fn)
    ref_dem_ds = gdal.Open(ref_dem_fn)

    #Get local cartesian coordinate system
    #local_srs = geolib.localtmerc_ds(src_dem_ds)
    #Use original source dataset coordinate system
    #Potentially issues with distortion and xyz/tiltcorr offsets for DEM with large extent
    local_srs = geolib.get_ds_srs(src_dem_ds)
    #local_srs = geolib.get_ds_srs(ref_dem_ds)

    #Resample to common grid
    ref_dem_res = float(geolib.get_res(ref_dem_ds, t_srs=local_srs, square=True)[0])
    #Create a copy to be updated in place
    src_dem_ds_align = iolib.mem_drv.CreateCopy('', src_dem_ds, 0)
    src_dem_res = float(geolib.get_res(src_dem_ds, t_srs=local_srs, square=True)[0])
    src_dem_ds = None
    #Resample to user-specified resolution
    ref_dem_ds, src_dem_ds_align = warplib.memwarp_multi([ref_dem_ds, src_dem_ds_align], \
            extent='intersection', res=args.res, t_srs=local_srs, r='cubic')

    res = float(geolib.get_res(src_dem_ds_align, square=True)[0])
    print("\nReference DEM res: %0.2f" % ref_dem_res)
    print("Source DEM res: %0.2f" % src_dem_res)
    print("Resolution for coreg: %s (%0.2f m)\n" % (args.res, res))

    #Iteration number
    n = 1
    #Cumulative offsets
    dx_total = 0
    dy_total = 0
    dz_total = 0

    #Now iteratively update geotransform and vertical shift
    while True:
        print("*** Iteration %i ***" % n)
        dx, dy, dz, static_mask, fig = compute_offset(ref_dem_ds, src_dem_ds_align, src_dem_fn, mode, max_offset, \
                mask_list=mask_list, max_dz=max_dz, slope_lim=slope_lim, plot=True)
        xyz_shift_str_iter = "dx=%+0.2fm, dy=%+0.2fm, dz=%+0.2fm" % (dx, dy, dz)
        print("Incremental offset: %s" % xyz_shift_str_iter)

        dx_total += dx
        dy_total += dy
        dz_total += dz

        xyz_shift_str_cum = "dx=%+0.2fm, dy=%+0.2fm, dz=%+0.2fm" % (dx_total, dy_total, dz_total)
        print("Cumulative offset: %s" % xyz_shift_str_cum)
        #String to append to output filenames
        xyz_shift_str_cum_fn = '_%s_x%+0.2f_y%+0.2f_z%+0.2f' % (mode, dx_total, dy_total, dz_total)

        #Should make an animation of this converging
        if n == 1: 
            #static_mask_orig = static_mask
            if fig is not None:
                dst_fn = outprefix + '_%s_iter%02i_plot.png' % (mode, n)
                print("Writing offset plot: %s" % dst_fn)
                fig.gca().set_title("Incremental: %s\nCumulative: %s" % (xyz_shift_str_iter, xyz_shift_str_cum))
                fig.savefig(dst_fn, dpi=300)

        #Apply the horizontal shift to the original dataset
        src_dem_ds_align = coreglib.apply_xy_shift(src_dem_ds_align, dx, dy, createcopy=False)
        #Should 
        src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, dz, createcopy=False)

        n += 1
        print("\n")
        #If magnitude of shift in all directions is less than tol
        #if n > max_iter or (abs(dx) <= min_dx and abs(dy) <= min_dy and abs(dz) <= min_dz):
        #If magnitude of shift is less than tol
        dm = np.sqrt(dx**2 + dy**2 + dz**2)
        dm_total = np.sqrt(dx_total**2 + dy_total**2 + dz_total**2)

        if dm_total > max_offset:
            sys.exit("Total offset exceeded specified max_offset (%0.2f m). Consider increasing -max_offset argument" % max_offset)

        #Stop iteration
        if n > max_iter or dm < tol:

            if fig is not None:
                dst_fn = outprefix + '_%s_iter%02i_plot.png' % (mode, n)
                print("Writing offset plot: %s" % dst_fn)
                fig.gca().set_title("Incremental:%s\nCumulative:%s" % (xyz_shift_str_iter, xyz_shift_str_cum))
                fig.savefig(dst_fn, dpi=300)

            #Compute final elevation difference
            if True:
                ref_dem_clip_ds_align, src_dem_clip_ds_align = warplib.memwarp_multi([ref_dem_ds, src_dem_ds_align], \
                        res=res, extent='intersection', t_srs=local_srs, r='cubic')
                ref_dem_align = iolib.ds_getma(ref_dem_clip_ds_align, 1)
                src_dem_align = iolib.ds_getma(src_dem_clip_ds_align, 1)
                ref_dem_clip_ds_align = None

                diff_align = src_dem_align - ref_dem_align
                src_dem_align = None
                ref_dem_align = None

                #Get updated, final mask
                static_mask_final = get_mask(src_dem_clip_ds_align, mask_list, src_dem_fn)
                static_mask_final = np.logical_or(np.ma.getmaskarray(diff_align), static_mask_final)
                
                #Final stats, before outlier removal
                diff_align_compressed = diff_align[~static_mask_final]
                diff_align_stats = malib.get_stats_dict(diff_align_compressed, full=True)

                #Prepare filtered version for tiltcorr fit
                diff_align_filt = np.ma.array(diff_align, mask=static_mask_final)
                diff_align_filt = outlier_filter(diff_align_filt, f=3, max_dz=max_dz)
                #diff_align_filt = outlier_filter(diff_align_filt, perc=(12.5, 87.5), max_dz=max_dz)
                slope = get_filtered_slope(src_dem_clip_ds_align)
                diff_align_filt = np.ma.array(diff_align_filt, mask=np.ma.getmaskarray(slope))
                diff_align_filt_stats = malib.get_stats_dict(diff_align_filt, full=True)

            #Fit 2D polynomial to residuals and remove
            #To do: add support for along-track and cross-track artifacts
            if tiltcorr and not tiltcorr_done:
                print("\n************")
                print("Calculating 'tiltcorr' 2D polynomial fit to residuals with order %i" % polyorder)
                print("************\n")
                gt = src_dem_clip_ds_align.GetGeoTransform()

                #Need to apply the mask here, so we're only fitting over static surfaces
                #Note that the origmask=False will compute vals for all x and y indices, which is what we want
                vals, resid, coeff = geolib.ma_fitpoly(diff_align_filt, order=polyorder, gt=gt, perc=(0,100), origmask=False)
                #vals, resid, coeff = geolib.ma_fitplane(diff_align_filt, gt, perc=(12.5, 87.5), origmask=False)

                #Should write out coeff or grid with correction 

                vals_stats = malib.get_stats_dict(vals)

                #Want to have max_tilt check here
                #max_tilt = 4.0 #m
                #Should do percentage
                #vals.ptp() > max_tilt

                #Note: dimensions of ds and vals will be different as vals are computed for clipped intersection
                #Need to recompute planar offset for full src_dem_ds_align extent and apply
                xgrid, ygrid = geolib.get_xy_grids(src_dem_ds_align)
                valgrid = geolib.polyval2d(xgrid, ygrid, coeff) 
                #For results of ma_fitplane
                #valgrid = coeff[0]*xgrid + coeff[1]*ygrid + coeff[2]
                src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, -valgrid, createcopy=False)

                if True:
                    print("Creating plot of polynomial fit to residuals")
                    fig, axa = plt.subplots(1,2, figsize=(8, 4))
                    dz_clim = malib.calcperc_sym(vals, (2, 98))
                    ax = pltlib.iv(diff_align_filt, ax=axa[0], cmap='RdBu', clim=dz_clim, \
                            label='Residual dz (m)', scalebar=False)
                    ax = pltlib.iv(valgrid, ax=axa[1], cmap='RdBu', clim=dz_clim, \
                            label='Polyfit dz (m)', ds=src_dem_ds_align)
                    #if tiltcorr:
                        #xyz_shift_str_cum_fn += "_tiltcorr"
                    tiltcorr_fig_fn = outprefix + '%s_polyfit.png' % xyz_shift_str_cum_fn
                    print("Writing out figure: %s\n" % tiltcorr_fig_fn)
                    fig.savefig(tiltcorr_fig_fn, dpi=300)

                print("Applying tilt correction to difference map")
                diff_align -= vals

                #Should iterate until tilts are below some threshold
                #For now, only do one tiltcorr
                tiltcorr_done=True
                #Now use original tolerance, and number of iterations 
                tol = args.tol
                max_iter = n + args.max_iter
            else:
                break

    if True:
        #Write out aligned difference map for clipped extent with vertial offset removed
        align_diff_fn = outprefix + '%s_align_diff.tif' % xyz_shift_str_cum_fn
        print("Writing out aligned difference map with median vertical offset removed")
        iolib.writeGTiff(diff_align, align_diff_fn, src_dem_clip_ds_align)

    if True:
        #Write out fitered aligned difference map
        align_diff_filt_fn = outprefix + '%s_align_diff_filt.tif' % xyz_shift_str_cum_fn
        print("Writing out filtered aligned difference map with median vertical offset removed")
        iolib.writeGTiff(diff_align_filt, align_diff_filt_fn, src_dem_clip_ds_align)

    #Extract final center coordinates for intersection
    center_coord_ll = geolib.get_center(src_dem_clip_ds_align, t_srs=geolib.wgs_srs)
    center_coord_xy = geolib.get_center(src_dem_clip_ds_align)
    src_dem_clip_ds_align = None

    #Write out final aligned src_dem 
    align_fn = outprefix + '%s_align.tif' % xyz_shift_str_cum_fn
    print("Writing out shifted src_dem with median vertical offset removed: %s" % align_fn)
    #Open original uncorrected dataset at native resolution
    src_dem_ds = gdal.Open(src_dem_fn)
    src_dem_ds_align = iolib.mem_drv.CreateCopy('', src_dem_ds, 0)
    #Apply final horizontal and vertial shift to the original dataset
    #Note: potentially issues if we used a different projection during coregistration!
    src_dem_ds_align = coreglib.apply_xy_shift(src_dem_ds_align, dx_total, dy_total, createcopy=False)
    src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, dz_total, createcopy=False)
    if tiltcorr:
        xgrid, ygrid = geolib.get_xy_grids(src_dem_ds_align)
        valgrid = geolib.polyval2d(xgrid, ygrid, coeff) 
        #For results of ma_fitplane
        #valgrid = coeff[0]*xgrid + coeff[1]*ygrid + coeff[2]
        src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, -valgrid, createcopy=False)
    #Might be cleaner way to write out MEM ds directly to disk
    src_dem_full_align = iolib.ds_getma(src_dem_ds_align)
    iolib.writeGTiff(src_dem_full_align, align_fn, src_dem_ds_align)

    if True:
        #Output final aligned src_dem, masked so only best pixels are preserved
        #Useful if creating a new reference product
        #Can also use apply_mask.py 
        print("Applying filter to shiftec src_dem")
        align_diff_filt_full_ds = warplib.memwarp_multi_fn([align_diff_filt_fn,], res=src_dem_ds_align, extent=src_dem_ds_align, \
                t_srs=src_dem_ds_align)[0]
        align_diff_filt_full = iolib.ds_getma(align_diff_filt_full_ds)
        align_diff_filt_full_ds = None
        align_fn_masked = outprefix + '%s_align_filt.tif' % xyz_shift_str_cum_fn
        iolib.writeGTiff(np.ma.array(src_dem_full_align, mask=np.ma.getmaskarray(align_diff_filt_full)), \
                align_fn_masked, src_dem_ds_align)

    src_dem_full_align = None
    src_dem_ds_align = None

    #Compute original elevation difference
    if True:
        ref_dem_clip_ds, src_dem_clip_ds = warplib.memwarp_multi([ref_dem_ds, src_dem_ds], \
                res=res, extent='intersection', t_srs=local_srs, r='cubic')
        src_dem_ds = None
        ref_dem_ds = None
        ref_dem_orig = iolib.ds_getma(ref_dem_clip_ds)
        src_dem_orig = iolib.ds_getma(src_dem_clip_ds)
        #Needed for plotting
        ref_dem_hs = geolib.gdaldem_mem_ds(ref_dem_clip_ds, processing='hillshade', returnma=True, computeEdges=True)
        src_dem_hs = geolib.gdaldem_mem_ds(src_dem_clip_ds, processing='hillshade', returnma=True, computeEdges=True)
        diff_orig = src_dem_orig - ref_dem_orig
        #Only compute stats over valid surfaces
        static_mask_orig = get_mask(src_dem_clip_ds, mask_list, src_dem_fn)
        #Note: this doesn't include outlier removal or slope mask!
        static_mask_orig = np.logical_or(np.ma.getmaskarray(diff_orig), static_mask_orig)
        #For some reason, ASTER DEM diff have a spike near the 0 bin, could be an issue with masking?
        diff_orig_compressed = diff_orig[~static_mask_orig]
        diff_orig_stats = malib.get_stats_dict(diff_orig_compressed, full=True)

        #Prepare filtered version for comparison 
        diff_orig_filt = np.ma.array(diff_orig, mask=static_mask_orig)
        diff_orig_filt = outlier_filter(diff_orig_filt, f=3, max_dz=max_dz)
        #diff_orig_filt = outlier_filter(diff_orig_filt, perc=(12.5, 87.5), max_dz=max_dz)
        slope = get_filtered_slope(src_dem_clip_ds)
        diff_orig_filt = np.ma.array(diff_orig_filt, mask=np.ma.getmaskarray(slope))
        diff_orig_filt_stats = malib.get_stats_dict(diff_orig_filt, full=True)

        #Write out original difference map
        print("Writing out original difference map for common intersection before alignment")
        orig_diff_fn = outprefix + '_orig_diff.tif'
        iolib.writeGTiff(diff_orig, orig_diff_fn, ref_dem_clip_ds)
        src_dem_clip_ds = None
        ref_dem_clip_ds = None

    if True:
        align_stats_fn = outprefix + '%s_align_stats.json' % xyz_shift_str_cum_fn
        align_stats = {}
        align_stats['src_fn'] = src_dem_fn 
        align_stats['ref_fn'] = ref_dem_fn 
        align_stats['align_fn'] = align_fn 
        align_stats['res'] = {} 
        align_stats['res']['src'] = src_dem_res
        align_stats['res']['ref'] = ref_dem_res
        align_stats['res']['coreg'] = res
        align_stats['center_coord'] = {'lon':center_coord_ll[0], 'lat':center_coord_ll[1], \
                'x':center_coord_xy[0], 'y':center_coord_xy[1]}
        align_stats['shift'] = {'dx':dx_total, 'dy':dy_total, 'dz':dz_total, 'dm':dm_total}
        #This tiltcorr flag gets set to false, need better flag
        if tiltcorr:
            align_stats['tiltcorr'] = {}
            align_stats['tiltcorr']['coeff'] = coeff.tolist()
            align_stats['tiltcorr']['val_stats'] = vals_stats
        align_stats['before'] = diff_orig_stats
        align_stats['before_filt'] = diff_orig_filt_stats
        align_stats['after'] = diff_align_stats
        align_stats['after_filt'] = diff_align_filt_stats
        
        import json
        with open(align_stats_fn, 'w') as f:
            json.dump(align_stats, f)

    #Create output plot
    if True:
        print("Creating final plot")
        kwargs = {'interpolation':'none'}
        #f, axa = plt.subplots(2, 4, figsize=(11, 8.5))
        f, axa = plt.subplots(2, 4, figsize=(16, 8))
        for ax in axa.ravel()[:-1]:
            ax.set_facecolor('k')
            pltlib.hide_ticks(ax)
        dem_clim = malib.calcperc(ref_dem_orig, (2,98))
        axa[0,0].imshow(ref_dem_hs, cmap='gray', **kwargs)
        im = axa[0,0].imshow(ref_dem_orig, cmap='cpt_rainbow', clim=dem_clim, alpha=0.6, **kwargs)
        pltlib.add_cbar(axa[0,0], im, arr=ref_dem_orig, clim=dem_clim, label=None)
        pltlib.add_scalebar(axa[0,0], res=res)
        axa[0,0].set_title('Reference DEM')
        axa[0,1].imshow(src_dem_hs, cmap='gray', **kwargs)
        im = axa[0,1].imshow(src_dem_orig, cmap='cpt_rainbow', clim=dem_clim, alpha=0.6, **kwargs)
        pltlib.add_cbar(axa[0,1], im, arr=src_dem_orig, clim=dem_clim, label=None)
        axa[0,1].set_title('Source DEM')
        #axa[0,2].imshow(~static_mask_orig, clim=(0,1), cmap='gray')
        axa[0,2].imshow(~static_mask, clim=(0,1), cmap='gray', **kwargs)
        axa[0,2].set_title('Surfaces for co-registration')
        dz_clim = malib.calcperc_sym(diff_orig_compressed, (5, 95))
        im = axa[1,0].imshow(diff_orig, cmap='RdBu', clim=dz_clim)
        pltlib.add_cbar(axa[1,0], im, arr=diff_orig, clim=dz_clim, label=None)
        axa[1,0].set_title('Elev. Diff. Before (m)')
        im = axa[1,1].imshow(diff_align, cmap='RdBu', clim=dz_clim)
        pltlib.add_cbar(axa[1,1], im, arr=diff_align, clim=dz_clim, label=None)
        axa[1,1].set_title('Elev. Diff. After (m)')

        #tight_dz_clim = (-1.0, 1.0)
        tight_dz_clim = (-2.0, 2.0)
        #tight_dz_clim = (-10.0, 10.0)
        #tight_dz_clim = malib.calcperc_sym(diff_align_filt, (5, 95))
        im = axa[1,2].imshow(diff_align_filt, cmap='RdBu', clim=tight_dz_clim)
        pltlib.add_cbar(axa[1,2], im, arr=diff_align_filt, clim=tight_dz_clim, label=None)
        axa[1,2].set_title('Elev. Diff. After (m)')

        #Tried to insert Nuth fig here
        #ax_nuth.change_geometry(1,2,1)
        #f.axes.append(ax_nuth)

        bins = np.linspace(dz_clim[0], dz_clim[1], 128)
        axa[1,3].hist(diff_orig_compressed, bins, color='g', label='Before', alpha=0.5)
        axa[1,3].hist(diff_align_compressed, bins, color='b', label='After', alpha=0.5)
        axa[1,3].set_xlim(*dz_clim)
        axa[1,3].axvline(0, color='k', linewidth=0.5, linestyle=':')
        axa[1,3].set_xlabel('Elev. Diff. (m)')
        axa[1,3].set_ylabel('Count (px)')
        axa[1,3].set_title("Source - Reference")
        before_str = 'Before\nmed: %0.2f\nnmad: %0.2f' % (diff_orig_stats['med'], diff_orig_stats['nmad'])
        axa[1,3].text(0.05, 0.95, before_str, va='top', color='g', transform=axa[1,3].transAxes, fontsize=8)
        after_str = 'After\nmed: %0.2f\nnmad: %0.2f' % (diff_align_stats['med'], diff_align_stats['nmad'])
        axa[1,3].text(0.65, 0.95, after_str, va='top', color='b', transform=axa[1,3].transAxes, fontsize=8)

        #This is empty
        axa[0,3].axis('off')

        suptitle = '%s\nx: %+0.2fm, y: %+0.2fm, z: %+0.2fm' % (os.path.split(outprefix)[-1], dx_total, dy_total, dz_total)
        f.suptitle(suptitle)
        f.tight_layout()
        plt.subplots_adjust(top=0.90)

        fig_fn = outprefix + '%s_align.png' % xyz_shift_str_cum_fn
        print("Writing out figure: %s" % fig_fn)
        f.savefig(fig_fn, dpi=300)
コード例 #4
0
def main():
    parser = get_parser()
    args = parser.parse_args()
    # comput number of physical and threaded cores
    n_cpu = psutil.cpu_count(logical=False)
    n_cpu_thread = psutil.cpu_count(logical=True)
    mode = args.mode
    pc_list = args.point_cloud_list
    if mode == 'gridding_only':
        tr = args.tr
        if args.tsrs is not None:
            tsrs = args.tsrs
        else:
           print("Projected Target CRS not provided, reading from the first point cloud")
           pc_ds = iolib.fn_getds(pc_list[0])
           wgs_srs = osr.SpatialReference()
           wgs_srs.ImportFromEPSG(4326)
           clon,clat = geolib.get_center(pc_ds,t_srs=wgs_srs)
           epsg_code = f'EPSG:{geo.compute_epsg(clon,clat)}'
           print(f"Detected EPSG code from point cloud {epsg_code}") 
           tsrs = epsg_code
     
        point2dem_opts = asp.get_point2dem_opts(tr=tr, tsrs=tsrs,threads=1)
        job_list = [point2dem_opts + [pc] for pc in pc_list]
        p2dem_log = p_map(asp.run_cmd,['point2dem'] * len(job_list), job_list, num_cpus = n_cpu)
        print(p2dem_log)
    if mode == 'classic_dem_align':
        ref_dem=args.refdem
        source_dem=args.source_dem
        max_displacement=args.max_displacement
        outprefix=args.outprefix
        align=args.align
        if args.trans_only == 0:
            trans_only=False
        else:
            trans_only=True
        asp.dem_align(ref_dem, source_dem, max_displacement, outprefix, align, trans_only,threads=n_cpu)
    if mode == 'multi_align':
        """ Align multiple DEMs to a single source DEM """
        ref_dem=args.refdem
        source_dem_list=args.source_dem_list
        max_displacement=args.max_displacement
        outprefix_list=['{}_aligned_to{}'.format(os.path.splitext(source_dem)[0],os.path.splitext(os.path.basename(ref_dem))[0]) for source_dem in source_dem_list]
        align=args.align
        if args.trans_only == 0:
            trans_only=False
        else:
            trans_only=True
        n_source=len(source_dem_list)
        ref_dem_list=[ref_dem] * n_source
        max_disp_list=[max_displacement] * n_source
        align_list=[align] * n_source
        trans_list=[trans_only] * n_source
        p_umap(asp.dem_align,ref_dem_list,source_dem_list,max_disp_list,outprefix_list,align_list,trans_list,[1]*n_source,num_cpus = n_cpu_thread)
    if mode == 'align_cameras':
        transform_txt = args.transform
        input_camera_list = args.cam_list
        n_cam=len(input_camera_list)
        if (args.rpc == 1) & (args.dem != 'None'):
            print("will also write rpc files")
            dem=args.dem
            img_list=arg.img_list
            rpc=True
        else:
            dem=None
            img_list=[None] * n_cam
            rpc=False
        transform_list=[transform_txt] * n_cam
        outfolder = args.outfol
        if not os.path.exists(outfolder):
            os.makedirs(outfolder)
        outfolder=[outfolder] * n_cam
        write=[True] * n_cam
        rpc=[rpc] * n_cam
        dem=[dem] * n_cam
        p_umap(asp.align_cameras,input_camera_list,transform_list,outfolder,write,rpc,dem,img_list,num_cpus = n_cpu_thread)
コード例 #5
0
    sys.exit("No valid input files")
print("Isolating x, y, z offsets")
delim = '_nuth_'
xyz = np.array([
    np.array([
        a[1:] for a in np.array(
            os.path.split(fn)[-1].split(delim)[-1].split('_'))[0:3]
    ],
             dtype=float) for fn in fn_list
])
print("Extracting center coords")
t_srs = geolib.hma_aea_srs
#t_srs = geolib.conus_aea_srs
#t_srs = geolib.wgs_srs
ll = np.array(
    [geolib.get_center(gdal.Open(fn), t_srs=t_srs) for fn in fn_list])
cy = ll[:, 1]
cx = ll[:, 0]
m = np.sqrt(np.sum(np.square(xyz), axis=1))

df = pd.DataFrame(xyz, index=fn_list, columns=['x', 'y', 'z'])
df['m'] = m
df['cy'] = cy
df['cx'] = cx

df = df.sort_values(by='m', ascending=False)
print(df.shape[0])

if filter:
    print("Correction magnitude")
    stats = malib.print_stats(m)