def test_fetch_datasets(): """Test fetching datasets.""" datasets.fetch_community_crime_data()
# Author: Vinicius Marques <*****@*****.**> # License: MIT ######################################################## # Imports import numpy as np import matplotlib.pyplot as plt from sklearn.cross_validation import train_test_split from pyglmnet import GLM, datasets ######################################################## # Download and preprocess data files X, y = datasets.fetch_community_crime_data('/tmp/glm-tools') n_samples, n_features = X.shape ######################################################## # Split the data into training and test sets X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.33, random_state=0) ######################################################## # Fit a gaussian distributed GLM with elastic net regularization # use the default value for reg_lambda glm = GLM(distr='gaussian', alpha=0.05, score_metric='pseudo_R2') # fit model
######################################################## # Author: Vinicius Marques <*****@*****.**> # License: MIT ######################################################## # Imports import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from pyglmnet import GLM, GLMCV, datasets ######################################################## # Download and preprocess data files X, y = datasets.fetch_community_crime_data() n_samples, n_features = X.shape ######################################################## # Split the data into training and test sets X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.33, random_state=0) ######################################################## # Fit a binomial distributed GLM with elastic net regularization # use the default value for reg_lambda glm = GLMCV(distr='binomial', alpha=0.05, score_metric='pseudo_R2',
######################################################## # Author: Vinicius Marques <*****@*****.**> # License: MIT ######################################################## # Imports import matplotlib.pyplot as plt from sklearn.cross_validation import train_test_split from pyglmnet import GLMCV, datasets ######################################################## # Download and preprocess data files X, y = datasets.fetch_community_crime_data('/tmp/glm-tools') n_samples, n_features = X.shape ######################################################## # Split the data into training and test sets X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.33, random_state=0) ######################################################## # Fit a gaussian distributed GLM with elastic net regularization # use the default value for reg_lambda glm = GLMCV(distr='gaussian', alpha=0.05, score_metric='pseudo_R2') # fit model
def test_fetch_datasets(): """Test fetching datasets.""" datasets.fetch_community_crime_data('/tmp/glm-tools')