def make_mesh(a: float, # radius of wire b: float, # radius of insulation dx: Optional[float] = None) -> MeshTri: dx = a / 2 ** 3 if dx is None else dx origin = np.zeros(3) geom = Geometry() wire = geom.add_circle(origin, a, dx, make_surface=True) geom.add_physical(wire.plane_surface, 'wire') insulation = geom.add_circle(origin, b, dx, holes=[wire.line_loop]) geom.add_physical(insulation.plane_surface, 'insulation') geom.add_physical(insulation.line_loop.lines, 'convection') return from_meshio(generate_mesh(geom, dim=2))
def make_mesh() -> MeshTri: # dimensions for RG316 coaxial cable inner_conductor_diameter = 0.50e-3 inner_insulator_diameter = 1.52e-3 outer_conductor_diameter = 1.98e-3 outer_insulator_diameter = 2.48e-3 # characteristic length for mesh generation lcar = 0.1e-3 geom = Geometry() inner_conductor = geom.add_circle( (0, 0, 0), inner_conductor_diameter/2, lcar=lcar) geom.add_physical( inner_conductor.plane_surface, label='inner_conductor') geom.add_physical( inner_conductor.line_loop.lines, label='inner_conductor_outer_surface') inner_insulator = geom.add_circle( (0, 0, 0), inner_insulator_diameter/2, lcar=lcar, holes=[inner_conductor.line_loop]) geom.add_physical( inner_insulator.plane_surface, label='inner_insulator') geom.add_physical( inner_insulator.line_loop.lines, label='outer_conductor_inner_surface') outer_conductor = geom.add_circle( (0, 0, 0), outer_conductor_diameter/2, lcar=lcar, holes=[inner_insulator.line_loop]) geom.add_physical( outer_conductor.plane_surface, label='outer_conductor') geom.add_physical( outer_conductor.line_loop.lines, label='outer_conductor_outer_surface') outer_insulator = geom.add_circle( (0, 0, 0), outer_insulator_diameter/2, lcar=lcar, holes=[outer_conductor.line_loop]) geom.add_physical( outer_insulator.plane_surface, label='outer_insulator') geom.add_physical( outer_insulator.line_loop.lines, label='boundary') return from_meshio(generate_mesh(geom, dim=2))
def geometry(self) -> Geometry: geom = Geometry() cylinder = geom.add_circle([*self.centre, 0.0], self.radius, lcar=self.lcar) channel = geom.add_rectangle( 0.0, self.length, 0.0, self.height, 0, holes=[cylinder], lcar=self.lcar ) geom.add_physical(channel.surface, "domain") geom.add_physical(channel.lines[1], "outlet") geom.add_physical(channel.lines[3], "inlet") return geom
.. math:: \psi = \left(1 - (x^2+y^2)/a^2\right)^2 / 64. """ from skfem import * from skfem.io import from_meshio from skfem.models.poisson import unit_load import numpy as np from pygmsh import generate_mesh from pygmsh.built_in import Geometry geom = Geometry() circle = geom.add_circle([0.] * 3, 1., .5**3) geom.add_physical(circle.line_loop.lines, 'perimeter') geom.add_physical(circle.plane_surface, 'disk') mesh = from_meshio(generate_mesh(geom, dim=2)) element = ElementTriMorley() mapping = MappingAffine(mesh) ib = InteriorBasis(mesh, element, mapping, 2) @BilinearForm def biharmonic(u, v, w): from skfem.helpers import ddot, dd return ddot(dd(u), dd(v))
'Boussinesq k'-factor'; by symmetry, this occurs for squares (k' ≐ 0.07363) and circles (k' = 1/π/4) at the centre and so can be evaluated by interpolation. """ from skfem import * from skfem.models.poisson import laplace, unit_load import numpy as np from pygmsh import generate_mesh from pygmsh.built_in import Geometry geom = Geometry() geom.add_physical_surface(geom.add_circle([0.] * 3, 1., .5**3).plane_surface, 'disk') points, cells = generate_mesh(geom)[:2] m = MeshTri(points[:, :2].T, cells['triangle'].T) basis = InteriorBasis(m, ElementTriP2()) A = asm(laplace, basis) b = asm(unit_load, basis) D = basis.get_dofs().all() I = basis.complement_dofs(D) x = 0*b x[I] = solve(*condense(A, b, I=I))
""" return sum(np.einsum("j...,ij...->i...", w["wind"], w["wind"].grad) * v) @skfem.BilinearForm def port_pressure(u, v, w): """v is the P2 velocity test-function, u a P1 pressure""" return sum(v * (u * w.n)) radius = 0.05 height = 0.41 geom = Geometry() cylinder = geom.add_circle([0.2, 0.2, 0.0], radius, lcar=radius / 2) channel = geom.add_rectangle( 0.0, 2.2, 0.0, height, 0, holes=[cylinder], lcar=radius / 2 ) geom.add_physical(channel.surface, "domain") geom.add_physical(channel.lines[1], "outlet") geom.add_physical(channel.lines[3], "inlet") mesh = from_meshio(generate_mesh(geom, dim=2)) element = {"u": skfem.ElementVectorH1(skfem.ElementTriP2()), "p": skfem.ElementTriP1()} basis = { **{v: skfem.InteriorBasis(mesh, e, intorder=4) for v, e in element.items()}, "inlet": skfem.FacetBasis(mesh, element["u"], facets=mesh.boundaries["inlet"]), } M = skfem.asm(vector_mass, basis["u"])
from skfem import * from skfem.models.poisson import laplace, unit_load import numpy as np from pygmsh import generate_mesh from pygmsh.built_in import Geometry geom = Geometry() geom.add_physical_surface( geom.add_circle([0.] * 3, 1., .5**3).plane_surface, 'disk') points, cells = generate_mesh(geom)[:2] m = MeshTri(points[:, :2].T, cells['triangle'].T) basis = InteriorBasis(m, ElementTriP2()) A = asm(laplace, basis) b = asm(unit_load, basis) D = basis.get_dofs().all() I = basis.complement_dofs(D) x = 0 * b x[I] = solve(*condense(A, b, I=I)) area = sum(b) k = b @ x / area**2 k1, = basis.interpolator(x)(np.zeros((2, 1))) / area if __name__ == '__main__': print('area = {:.4f} (exact = {:.4f})'.format(area, np.pi))