コード例 #1
0
def _checkInput(obj, alpha, theta, lb, ub):

    if alpha is None:
        alpha = 0.05
    elif alpha > 1.0:
        raise InputError("Cannot have a confidence level higher than 1")
    elif alpha < 0.0:
        raise InputError("Cannot have a confidence level lower than 0")

    if lb is None or ub is None:
        if ub is None:
            ub = np.array([None] * len(theta))
        if lb is None:
            lb = np.array([None] * len(theta))
    else:
        if len(lb) != len(ub):
            raise InputError("Number of lower and upper bound must be equal")
        if len(lb) != len(theta):
            raise InputError("Number of box constraints must equal to the" +
                             " number of variables")

    if theta is None:
        if ub is not None and lb is not None:
            theta = obj.fit(lb + (ub - lb) / 2, lb=lb, ub=ub)
        else:
            raise InputError("Expecting the estimated parameter when box" +
                             "constraints are not supplied")

    return alpha, theta, lb, ub
コード例 #2
0
ファイル: _species.py プロジェクト: twomagpi/pygom
def getSpecieInfo(specie, returnDict=True):
    '''
    Return information of a :class:`libsbml.Species` object

    Parameters
    ----------
    specie: :class:`libsbml.Species`

    returnDict: bool, optional
        whether information should be returned as a dictionary
    '''
    assert isinstance(specie, Species), "Species object expected"

    ID = specie.getId()
    name = specie.getName()  # optional, output string
    name = name if len(name) != 0 else None

    comps = specie.getCompartment()

    x0 = specie.getInitialAmount()  # optional
    z0 = specie.getInitialConcentration()  # optional

    unit = specie.getSubstanceUnits()  # optional, output string
    unit = unit if len(unit) != 0 else None

    isDensity = specie.getHasOnlySubstanceUnits()

    y = specie.getBoundaryCondition()
    constant = specie.getConstant()
    conversion = specie.getConversionFactor()

    if isDensity:
        if z0 == 0.0:
            raise InputError('Species was indicated to be a density')
    else:
        if x0 == 0.0:
            raise InputError('Species was indicated to be an amount')

    if returnDict:
        return {
            'id': ID,
            'name': name,
            'comp': comps,
            'x0': x0,
            'z0': z0,
            'unit': unit,
            'density': isDensity,
            'y': y,
            'constant': constant,
            'conversion': conversion
        }
    else:
        return ID, name, comps, x0, z0, unit, isDensity, y, constant, conversion
コード例 #3
0
def check_dimension(x, y):
    '''
    Compare the length of two array like objects.  Converting both to a numpy
    array in the process if they are not already one.

    Parameters
    ----------
    x: array like
        first array
    y: array like
        second array

    Returns
    -------
    x: :class:`numpy.array`
        checked and converted first array
    y: :class:`numpy.array`
        checked and converted second array
    '''

    y = check_array_type(y)
    x = check_array_type(x)

    if len(y) != len(x):
        raise InputError("The number of observations and time points " +
                         "should have the same length")

    return (x, y)
コード例 #4
0
def str_or_list(x):
    '''
    Test to see whether input is a string or a list.  If it
    is a string, then we convert it to a list.

    Parameters
    ----------
    x:
        str or list

    Returns
    -------
    x:
        x in list form

    '''
    if isinstance(x, list):
        return x
    elif isinstance(x, tuple):
        return list(x)
    elif isinstance(x, str):
        return [x]
    else:
        raise InputError("Expecting a string or list")
コード例 #5
0
ファイル: __init__.py プロジェクト: trdurrant/pygom
def integrateFuncJac(func,
                     jac,
                     x0,
                     t0,
                     t,
                     args=(),
                     includeOrigin=False,
                     full_output=False,
                     method=None,
                     nsteps=10000):
    '''
    A replacement for :mod:`scipy.integrate.odeint` which performs integration
    using :class:`scipy.integrate.ode`, tries to pick the correct integration
    method at the start through eigenvalue analysis

    Parameters
    ----------
    func: callable
        the ode :math:`f(x)`
    jac: callable
        jacobian of the ode, :math:`J_{i,j} = \\nabla_{x_{j}} f_{i}(x)`
    x0: `numpy.ndarray` or list of numeric
        initial value of the states
    t0: float
        initial time
    args: tuple, optional
        additional arguments to be passed on
    includeOrigin: bool, optional
        if the output should include the initial states x0
    full_output: bool, optional
        if additional output is required
    method: str, optional
        the integration method.  All those availble in
        :class:`ode <scipy.integrate.ode>` are allowed with 'vode' and
        'ivode' representing the non-stiff and stiff version respectively.
        Defaults to None, which tries to choose the integration method
        via eigenvalue analysis (only one) using the initial conditions
    nstep: int, optional
        number of steps allowed between each time point of the integration

    Returns
    -------
    solution: array like
        a :class:`np.ndarray` of shape (len(t), len(x0)) if includeOrigin is
        False, else an extra row with x0 being the first.
    output : dict, only returned if full_output=True
        Dictionary containing additional output information

        =========  ===========================================
        key        meaning
        =========  ===========================================
        'ev'       vector of eigenvalues at each t
        'maxev'    maximum eigenvalue at each t
        'minev'    minimum eigenvalue at each t
        'suc'      list whether integration is successful
        'in'       name of integrator
        =========  ===========================================

    '''
    # determine the type of integrator we want
    # print "we are in"
    if method is None:
        if full_output == True:
            # obtain the eigenvalue
            e = np.linalg.eig(jac(t0, x0, *args))[0]
            method = _determineIntegratorGivenEigenValue(e)
        else:
            method = 'lsoda'

    r = _setupIntegrator(func, jac, x0, t0, args, method, nsteps)
    # print method
    # print r
    # holder for the integration
    solution = list()
    if full_output:
        successInfo = list()
        eigenInfo = list()
        maxEigen = list()
        minEigen = list()

    if includeOrigin:
        solution.append(x0)

    if isinstance(t, Number):
        # force it to something iterable
        t = [t]
    elif is_list_like(t):  #, (np.ndarray, list, tuple)):
        pass
    else:  #
        raise InputError("Type of input time is not of a recognized type")

    for deltaT in t:
        if full_output:
            o1, o2, o3, o4, o5 = _integrateOneStep(r, deltaT, func, jac, args,
                                                   True)
            successInfo.append(o2)
            eigenInfo.append(o3)
            maxEigen.append(o4)
            minEigen.append(o5)
            method = _determineIntegratorGivenEigenValue(o3)
            r = _setupIntegrator(func, jac, o1, deltaT, args, method, nsteps)
        else:
            # TODO: switches
            o1 = _integrateOneStep(r, deltaT, func, jac, args, False)
        # append solution, same thing whether the output is full or not
        solution.append(o1)
    # finish integration

    solution = np.array(solution)

    if full_output == True:
        # have both
        output = dict()
        output['ev'] = np.array(eigenInfo)
        output['minev'] = np.array(minEigen)
        output['maxev'] = np.array(maxEigen)
        output['suc'] = np.array(successInfo)
        output['in'] = method
        return solution, output
    else:
        # only the integration
        return solution
コード例 #6
0
ファイル: plot_det.py プロジェクト: trdurrant/pygom
def plot_det(solution, t, stateList=None, y=None, yStateList=None):
    '''
    Plot the results of the integration

    Parameters
    ==========
    solution: :class:`numpy.ndarray`
        solution from the integration
    t: array like
        the vector of time where the integration output correspond to
    stateList: list
        name of the states, if available

    Notes
     -----
    If we have 5 states or more, it will always be arrange such
    that it has 3 columns.
    '''

    import matplotlib.pyplot

    assert isinstance(solution, np.ndarray), "Expecting an np.ndarray"
    # if not isinstance(solution, np.ndarray):
    #     raise InputError("Expecting an np.ndarray")

    # tests on solution
    if len(solution) == solution.size:
        numState = 1
    else:
        numState = len(solution[0, :])

    assert len(solution) == len(t), "Number of solution not equal to t"
    # if len(solution) != len(t):
    #     raise InputError("Number of solution not equal to t")

    if stateList is not None:
        if len(stateList) != numState:
            raise InputError("Number of state (string) should be equal " +
                             "to number of output")
        stateList = [str(i) for i in stateList]

    # tests for y
    if y is not None:
        y = check_array_type(y)
        # if type(y) != np.ndarray:
        #     y = np.array(y)

        numTargetSol = len(y)
        # we test the validity of the input first
        if numTargetSol != len(t):
            raise InputError("Number of realization of y not equal to t")
        # then obtain the information
        if y.size == numTargetSol:
            numTargetState = 1
            y = y.reshape((numTargetSol, 1))
        else:
            numTargetState = y.shape[1]

        if yStateList is None:
            if numTargetState != numState:
                if stateList is None:
                    raise InputError("Unable to identify which observations" +
                                     " the states belong to")
                else:
                    nonAuto = False
                    for i in stateList:
                        # we are assuming here that we always name our
                        # time state as \tau when it is a non-autonomous system
                        if str(i) == 'tau':
                            nonAuto = True

                    if nonAuto == True:
                        if y.shape[1] != (solution.shape[1] - 1):
                            raise InputError("Size of y not equal to yhat")
                        else:
                            yStateList = list()
                            # we assume that our observation y follows the same
                            # sequence as the states and copy over without the
                            # time component
                            for i in stateList:
                                # test
                                if str(i) != 'tau':
                                    yStateList.append(str(i))
                    else:
                        raise InputError("Size of y not equal to yhat")
            else:
                yStateList = stateList
        else:
            if numTargetState == 1:
                if yStateList in (tuple, list):
                    if len(yStateList) != numTargetState:
                        raise InputError("Number of target state not equal to y")
                    else:
                        yStateList = [str(i) for i in yStateList]
                else:
                    if isinstance(yStateList, str):
                        yStateList = [yStateList]
                    elif isinstance(yStateList, sympy.Symbol):
                        yStateList = [str(yStateList)]
                    elif isinstance(yStateList, list):
                        assert len(yStateList) == 1, "Only have one target state"
                    else:
                        raise InputError("Not recognized input for yStateList")
            else:
                if numTargetState > numState:
                    raise InputError("Number of target state cannot be larger"
                                    + " than the number of state")

    # # let's take a moment and appreciate that we have finished checking

    # note that we can probably reduce the codes here significantly but
    # i have not thought of a good way of doing it yet.
    if numState > 9:
        numFigure = int(np.ceil(numState/9.0))
        k = 0
        last = False
        # loop over all the figures minus 1
        for z in range(numFigure - 1):
            f, axarr = matplotlib.pyplot.subplots(3, 3)
            for i in range(3):
                for j in range(3):
                    axarr[i, j].plot(t, solution[:, k])
                    if stateList is not None:
                        axarr[i, j].set_title(stateList[k])
                        if yStateList is not None:
                            if stateList[k] in yStateList:
                                idx = yStateList.index(stateList[k])
                                axarr[i, j].plot(t, y[:, idx], 'r')
                        axarr[i, j].set_xlabel('Time')
                    k += 1
            # a single plot finished, now we move on to the next one

        # now we are getting to the last one
        row = int(np.ceil((numState - (9*(numFigure - 1)))/3.0))
        f, axarr = matplotlib.pyplot.subplots(row, 3)
        if row == 1:
            for j in range(3):
                if last == True:
                    break
                axarr[j].plot(t, solution[:, k])
                if stateList is not None:
                    axarr[j].set_title(stateList[k])
                    if yStateList is not None:
                        if stateList[k] in yStateList:
                            idx = yStateList.index(stateList[k])
                            axarr[j].plot(t, y[:,idx], 'r')
                    axarr[j].set_xlabel('Time')
                    axarr[j].set_xlim([min(t), max(t)])
                k += 1
                if k == numState:
                    last = True
        else:
            for i in range(row):
                if last == True:
                    break
                for j in range(3):
                    if last == True:
                        break
                    axarr[i, j].plot(t, solution[:, k])
                    if stateList is not None:
                        axarr[i, j].set_title(stateList[k])
                        if yStateList is not None:
                            if stateList[k] in yStateList:
                                idx = yStateList.index(stateList[k])
                                axarr[i, j].plot(t, y[:,idx], 'r')
                        axarr[i, j].set_xlabel('Time')
                        axarr[i, j].set_xlim([min(t), max(t)])
                    k += 1
                    if k == numState:
                        last = True

    elif numState <= 3:
        if numState == 1:
            # we only have one state, easy stuff
            f, axarr = matplotlib.pyplot.subplots(1, 1)
            matplotlib.pyplot.plot(t, solution)
            if stateList is not None:
                matplotlib.pyplot.plot(stateList[0])
        else:
            # we can deal with it in a single plot, in the format of 1x3
            f, axarr = matplotlib.pyplot.subplots(1, numState)
            for i in range(numState):
                axarr[i].plot(t, solution[:, i])
                if stateList is not None:
                    axarr[i].set_title(stateList[i])
                    if yStateList is not None:
                        if stateList[i] in yStateList:
                            idx = yStateList.index(stateList[i])
                            axarr[i].plot(t, y[:,idx], 'r')
                    # label :)
                    axarr[i].set_xlabel('Time')

    elif numState == 4:
        # we have a total of 4 plots, nice and easy display of a 2x2.
        # Going across first before going down
        f, axarr = matplotlib.pyplot.subplots(2, 2)
        k = 0
        for i in range(2):
            for j in range(2):
                axarr[i, j].plot(t, solution[:, k])
                if stateList is not None:
                    axarr[i, j].set_title(stateList[k])
                    if yStateList is not None:
                        if stateList[k] in yStateList:
                            idx = yStateList.index(stateList[k])
                            axarr[i, j].plot(t, y[:,idx], 'r')
                    # label :)
                    axarr[i, j].set_xlabel('Time')
                k += 1
                if numState == k:
                    break
    else:
        row = int(np.ceil(numState/3.0))
        # print(row)
        f, axarr = matplotlib.pyplot.subplots(row, 3)
        k = 0
        for i in range(row):
            for j in range(3):
                axarr[i, j].plot(t, solution[:, k])
                if stateList is not None:
                    axarr[i, j].set_title(stateList[k])
                    if yStateList is not None:
                        if stateList[k] in yStateList:
                            idx = yStateList.index(stateList[k])
                            axarr[i, j].plot(t, y[:,idx], 'r')
                    axarr[i, j].set_xlabel('Time')
                k += 1
                if numState == k:
                    break
    # finish all options, now we have plotted.
    # tidy up the output.  Without tight_layout() we will have
    # numbers in the axis overlapping each other (potentially)
    f.tight_layout()
    matplotlib.pyplot.show()