blas.nrm2(hTemp1[-n::] - matrix(GTemp)[-n::,:] * solSOCP['x'][1::] ) blas.nrm2(hTemp[1::] - GTemp[1::,1::] * sol1['x'] ) # now an socp print sol1['x'] print sol2['x'] print qpOut['x'] print solSOCP['x'][1::] ## sqp xhat, output = sqp(rosen, rosen_der, x0=theta, maxiter=100, method='trust', disp=5, full_output=True) xhat, output = sqp(rosen, rosen_der, rosen_hess, x0=theta, maxiter=100, method='trust', disp=5, full_output=True) xhat, output = sqp(rosen, rosen_der, rosen_hess, x0=theta,
jac=objFH.gradient, hess=objFH.jtj, bounds = numpy.array(boxBounds), method = 'trust-ncg', options = {'maxiter':1000}, callback=objFH.thetaCallBack) from pygotools.convex import sqp, ip boxBoundsArray = numpy.array(boxBounds) lb = numpy.array([0.0,0.0,0.0]) ub = numpy.array([5.0,5.0,5.0]) xhat,qpOut = sqp(objFH.cost, objFH.gradient, hessian=objFH.jtj, x0=[0.5,0.5,0.5], lb=lb, ub=ub,disp=3,full_output=True) xhat,qpOut = sqp(objFH.cost, objFH.gradient, hessian=None, x0=[0.5,0.5,0.5], lb=lb, ub=ub,disp=3,full_output=True) xhat,output = ip(objFH.cost, objFH.gradient, hessian=objFH.jtj, x0=[0.5,0.5,0.5], lb=lb, ub=ub, method='bar', disp=3, full_output=True) xhat,output = ip(objFH.cost, objFH.gradient, hessian=None, x0=[0.5,0.5,0.5], lb=lb, ub=ub,disp=3,full_output=True) xhat,output = ipD(objFH.cost, objFH.gradient, hessian=objFH.jtj, x0=[0.5,0.5,0.5], lb=lb, ub=ub,disp=3,full_output=True)
method='exact', disp=3, full_output=True) xhatA, outputA = trustRegion(objFH.cost, objFH.gradient, hessian='SR1', x0=theta, maxiter=100, method='exact', disp=3, full_output=True) ## sqp xhat, output = sqp(objFH.cost, objFH.gradient, x0=theta, disp=4, full_output=True) xhat, output = sqp(objFH.cost, objFH.gradient, x0=theta, lb=lb, ub=ub, disp=4, full_output=True) ## interior point interface xhat, output = ip(objFH.cost, objFH.gradient, x0=theta, lb=None, ub=None, G=None, h=None,