コード例 #1
0
options["error_type"] = "loocv"
options["qoi"] = "all"
options["n_grid_gradient"] = 5
options["classifier"] = "learning"
options["classifier_options"] = {"clusterer": "KMeans",
                                 "n_clusters": 2,
                                 "classifier": "MLPClassifier",
                                 "classifier_solver": "lbfgs"}
options["fn_results"] = fn_results
options["save_session_format"] = save_session_format
options["grid"] = pygpc.Random
options["grid_options"] = None

# generate grid
grid = pygpc.Random(parameters_random=problem.parameters_random,
                    n_grid=1000,  # options["matrix_ratio"] * n_coeffs
                    seed=1)

# define algorithm
algorithm = pygpc.MEStatic(problem=problem, options=options, grid=grid)

#%%
# Running the gpc
# ---------------

# Initialize gPC Session
session = pygpc.Session(algorithm=algorithm)

# run gPC algorithm
session, coeffs, results = session.run()
コード例 #2
0
# Example
# ^^^^^^^

import time
import pygpc
import numpy as np
import multiprocessing
import seaborn as sns
from matplotlib import pyplot as plt
from collections import OrderedDict

SurfaceCoverageSpecies = pygpc.SurfaceCoverageSpecies()

# generate grid with 1000 sampling points
grid = pygpc.Random(
    parameters_random=SurfaceCoverageSpecies.problem.parameters_random,
    n_grid=100)

# define different values for n_cpu
n_cpu_list = [0, 1, multiprocessing.cpu_count()]

t_eval = dict()

# evaluate model with different values for n_cpu
for n_cpu in n_cpu_list:
    # initialize computation class; this is done in the algorithm with options["n_cpu"]
    com = pygpc.Computation(n_cpu=n_cpu)

    # run model and determine computation time
    t_n_cpu = []
コード例 #3
0
# define problem
parameters = OrderedDict()
parameters["x1"] = pygpc.Beta(pdf_shape=[1, 1], pdf_limits=[1.2, 2])
parameters["x2"] = 1.
parameters["x3"] = pygpc.Beta(pdf_shape=[1, 1], pdf_limits=[0, 0.6])
problem = pygpc.Problem(model, parameters)

#%%
# Depending on the grid and its density, the methods will behave differently.
# Here, we use 100 random sampling points in the parameter space defined before.

# define grid
n_grid = 100
grid = pygpc.Random(parameters_random=problem.parameters_random,
                    n_grid=n_grid,
                    seed=1)

#%%
# We are setting up a Computation instance to evaluate the model function in the 100 grid points

# initializing Computation class
com = pygpc.Computation(n_cpu=0, matlab_model=False)

# evaluating model function
res = com.run(model=model,
              problem=problem,
              coords=grid.coords,
              coords_norm=grid.coords_norm,
              i_iter=None,
              i_subiter=None,
コード例 #4
0
ファイル: plot_backends.py プロジェクト: xiaoyaoyth/pygpc
model = pygpc.testfunctions.DiscontinuousRidgeManufactureDecay()

# define parameters
parameters = OrderedDict()
for i_dim in range(n_dim):
    parameters["x" + str(i_dim)] = pygpc.Beta(pdf_shape=[1, 1],
                                              pdf_limits=[1.2, 2])

# define problem
problem = pygpc.Problem(model, parameters)

# define grid
options = dict()
grid = pygpc.Random(parameters_random=problem.parameters_random,
                    n_grid=n_samples,
                    options={
                        "n_grid": n_samples,
                        "seed": 1
                    })

# define gPC
gpc = pygpc.Reg(problem=problem,
                order=[n_basis_order] * n_dim,
                order_max=n_basis_order,
                order_max_norm=1,
                interaction_order=n_dim,
                interaction_order_current=n_dim,
                options=options)

gpc.grid = grid

# get number of basis functions