コード例 #1
0
ファイル: rng_test.py プロジェクト: sarattall/old-intersect
 def test(self):
     refrng = rngmodule.rng()
     mylist = rngmodule.list_available_rngs()
     for i in mylist:
         if i == "knuthran2002":
             continue
         r = getattr(rngmodule, i)()
         test = 0
         try:
             assert type(r) == type(refrng)
             test = 1
         finally:
             if test == 0:
                 print "r      = %s %s" % (type(r), repr(r))
                 print "refrng = %s %s" % (type(refrng), repr(refrng))
コード例 #2
0
ファイル: siman_tsp.py プロジェクト: juhnowski/FishingRod
def siman_exp():
    prepare_distance_matrix()

    # set up a trivial initial route */
    print("# initial order of cities:\n")
    for city in cities:
        print city


    #print " # distance matrix is:"
    #print_distance_matrix();

    mytsp = Tsp()
    mytsp.SetRoute(numx.arange(n_cities))
    mytsp.SetNCities(n_cities)
    result = siman.solve(rng.rng(), mytsp)
    route  = result.GetRoute()
    print("# final order of cities:\n")
    for i in route:
        print cities[i]
コード例 #3
0
ファイル: bspline.py プロジェクト: juhnowski/FishingRod
def run():
    r = rng.rng()
    bw = bspline(4, nbreak)


    # Data to be fitted
    x = 15. / (N-1) * numx.arange(N)
    y = numx.cos(x) * numx.exp(0.1 * x)    
    sigma = .1
    w = 1.0 / sigma**2 * numx.ones(N) 
    dy = r.gaussian(sigma, N)
    y  = y + dy

    # use uniform breakpoints on [0, 15] 
    bw.knots_uniform(0.0, 15.0)

    X = numx.zeros((N, ncoeffs))
    for i in range(N):
        B = bw.eval(x[i])
        X[i,:] = B
        
    # do the fit
    c, cov, chisq = multifit.wlinear(X, w, y, multifit.linear_workspace(N, ncoeffs))

    # output the smoothed curve
    res_y = []
    res_y_err = []
    for i in range(N):
        B = bw.eval(x[i])
        yi, yi_err = multifit.linear_est(B, c, cov)
        res_y.append(yi)
        res_y_err.append(yi_err)
        #print yi, yerr
    res_y = numx.array(res_y)
    res_y_err = numx.array(res_y_err)    
    return (x, y,), (x, res_y),  res_y_err
コード例 #4
0
ファイル: sismoda.py プロジェクト: calugo/SISFRAXINUS
    for k in trx:
        sumtr+=k
        if sumtr>=lk:
            i=cnt
            break
        cnt+=1

    return i

####################

#Model A
import pickle
from pygsl import rng as rn
SEED=987654321
rk=rn.rng()
rk.set(SEED)

N=1e3
ao=10
I=[] #Players
S=[] #Available

tn=0.0 #monte-carlo time
Tau=500 #Final time
tp=1.0 #print time step

na=ao #players 0 I
nb=N-ao  #non players S
nt=[na, nb] #na I, nb nonplayer S
コード例 #5
0
def job(PT, SEED, nte, neff, tn, RXCLRPTS, CRKPTS, TES, nj, gold, Qi):
    from math import floor
    from pygsl import rng as rn
    import sys
    import gc
    sys.path.append('../LNKMODEL/')
    import Lffit
    import LffitB
    Np = PT[0]
    m1 = PT[1]  #hgt effs
    m2 = PT[2]  #hgt te
    m3 = PT[3]  #eff recomb
    m4 = PT[4]  #te dup
    m5 = PT[5]  #eff dup+te
    m6 = PT[6]  #eff->null
    m7 = PT[7]  #null ->0
    m8 = PT[8]  ##eff->0
    beta1 = PT[9]
    beta2 = PT[10]
    wo = PT[11]
    #print("parameter vector:"% PT)
    av1 = 0.5 * (RXCLRPTS[2] - RXCLRPTS[1])
    av2 = 0.5 * (CRKPTS[2] - CRKPTS[1])
    av3 = 0.5 * (TES[2] - TES[1])
    Lth = floor(
        (RXCLRPTS[0] + CRKPTS[0] + TES[0]) * (1.0 / 3.0) * (av1 + av2 + av3))
    #print Lth
    MU = [Np, m1, m2, m3, m4, m5, m6, m7, m8, Lth, beta1, beta2, wo]
    Qj = Qi
    #SEED=987654320
    rk = rn.rng()
    rk.set(SEED)

    ################
    if nj == 0:
        gen = {}
        trs = {}
        gen = Lffit.inigenome(nte, neff, rk, [TES[1], TES[2]],
                              [CRKPTS[1], RXCLRPTS[2]])

        #print gen
        #raw_input()
################
    if nj > 0:
        gen = {}
        trs = {}
        k = 0
        for i in gold.keys():
            gl = []
            if gold[i][0] == 'te':
                gl = [gold[i][0], gold[i][1]]
                gen[k] = gl
                k += 1
            if gold[i][0] == 'eff':
                qj = rk.uniform_pos()
                snew = gold[i][2] + (0.01 * (1.0 - 2.0 * rk.uniform_pos()))
                if ((qj > Qj) and (snew > 0.0)):
                    gl = [gold[i][0], gold[i][1], snew]
                else:
                    gl = [gold[i][0], gold[i][1], 0.0]
                gen[k] = gl
                k += 1

    #  print gen
    #  raw_input()


################
    Ntot = RXCLRPTS[0] + CRKPTS[0] + TES[0]
    pqr = {}
    ltn = []
    lth = []
    ngt = []
    fitn = []
    trns = []
    flg = 'all-good'
    for nk in range(tn):

        trs = Lffit.trates(gen, MU)
        rij, sr = Lffit.montec(trs, rk)
        trns.append(rij)
        if sr != 'TRUE':
            pqr[nk] = [rij[0], rij[1], gen]
            ltn.append(Lffit.lent(gen))
            lth.append(Lth)
            #fitn.append(Lffit.ft(gen))
            wq = Lffit.ft(gen)
            fitn.append(1.0 - (wq / (wq + wo)))
            ngt.append(len(gen.keys()))
            #del gu
            gu = {}
            gu = LffitB.transform(rij, gen, rk, [TES[1], TES[2]],
                                  [CRKPTS[1], RXCLRPTS[2]])
            del gen
            gen = {}
            for i in gu.keys():
                gen[i] = gu[i]
            #gc.collect()
        else:
            flg = 'sumzero'
            break

        if len(gen.keys()) > 2000:
            flg = 'limit-reached'
            break

    #print("JOB COMPLETED")
    #print flg
    gc.collect()
    return [lth, ltn, ngt, pqr, gen, flg, fitn, trns]
コード例 #6
0
def run():

    x_init = np.array([1.0, 1.0, 0.0])
    xtol = 1e-8
    gtol = 1e-8
    ftol = 0

    p = 3
    n = 40

    rng.env_setup()
    r = rng.rng()
    t = np.arange(n)
    x_final =  5., .1 , 1
    y = func(x_final, t)
    s = 0.1 * y
    dy = np.array(list(map(r.gaussian, s)))
    y = y + dy
    weights = 1./((0.1 * y)**2)

    T = multifit_nlinear.cvar.trust
    pygsl.add_c_traceback_frames(True)
    pygsl.set_debug_level(0)
    params = multifit_nlinear.default_parameters()
    w = multifit_nlinear.workspace(T, params, n, p)

    # What a hack 
    w.set_pyobject(w)
    
    w.winit(x_init, weights, df= expb_df, f=expb_f, fvv = None, args=y)

    f  = w.residual()
    chisq0 = np.dot(f, f)

    #plt.ion()
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.clear()
    ax.errorbar(t, y, yerr=dy)
    Y = func(x_init, t)
    line, = ax.plot(t, Y, '-')
    plt.show(False)
    plt.draw()
    
    max_iter = 200
    #status, info  = w.driver(200, xtol, gtol, ftol, callback)

    for step in range(max_iter):
        x = w.position()
        print("x = %s" %(x,))
        #x = w.x()
        Y = func(x, t)
        line.set_data(t, Y)

        w.iterate()
        status, info = w.test(xtol, gtol, ftol)
        fig.canvas.draw()
        plt.pause(0.5)
        #ax.figure.clf()
        if status == errno.GSL_SUCCESS:
            break
        elif status == errno.GSL_CONTINUE:
            continue
        else:
            raise ValueError("Unexpected status %d" %(status,))
    else:
        raise ValueError("Did not finish within %d steps" %(max_iter,))


    covar = w.covar(0.0)
    f  = w.residual()
    chisq = np.dot(f, f)

    dof = n - p
    c = max(1,  np.sqrt(chisq / dof))

    reasons = ("small gradient", "small step size")
    status, info = w.test(xtol, gtol, ftol)

    print("Summary from method %s/%s" %(w.name(), w.trs_name()) )
    print("  number of iterations %d" %(w.niter(),) )
    print("  function evaluations %d" %(w.params.fdf.nevalf,))
    print("  jacobian evaluations %d" %(w.params.fdf.nevaldf,))
    print("  reason for stopping  %s" %(reasons[info],))
    print("  initial |f(x)|     = %f" %(np.sqrt(chisq0),) )
    print("  final   |f(x)|     = %f" %(np.sqrt(chisq),) )
    print("  chisq / dof          %g" %(chisq / dof) )

    x = w.position()
    x = w.x()
    print("  A     = %.5f +/- %.5f" %  ( x[0], c * covar[0,0]) )
    print("  lamba = %.5f +/- %.5f" %  ( x[1], c * covar[1,1]) )
    print("  b     = %.5f +/- %.5f" %  ( x[2], c * covar[2,2]) )

    plt.show()
コード例 #7
0
    efflens, telens = Lffit.splitgen(gen)
    print len(efflens), len(telens)
    pthl = po + nx
    if telens or efflens:
        pdt.savedata(lth, ltn, ngt, efflens, telens, P, SEED, pthl, fitn, trns,
                     nefft, ntest, lnefft, lntest, tn, JMPS)

    qij.put(gen)


###############################################################################
RO = 0
for rnz in range(RO, RUNS):
    PAR = 9
    NUM_PROCESSES = 3 * 3
    rk = rn.rng()
    rk.set(SEED - rnz)
    Qi = 0.1
    gno = Lffit.inigenome(nte, neff, rk, PL1, PL2)
    for i in range(PAR):

        P1 = [Np, m1, m2, m3, m4, m5, m6, m7, m8, Lth, beta1, beta2, wo, Ntot]

        for j in range(JMPS):
            qij = Queue()

            if j == 0:
                gn = {}
                pj = Process(target=evolx,
                             args=(
                                 P1,
コード例 #8
0
def graph(N,gtype):
  A={}

###########################
  if gtype[0]=='grid':
    k=0
    for j in range(N):
      for i in range(N):
        nnh=[]

        if i<(N-1):
            nnh.append(k+1)
        if i>0:
            nnh.append(k-1)
        if j>0:
            nnh.append(k-N)
        if j<(N-1):
            nnh.append(k+N)
        A[k]=nnh
        k+=1
        #print A
##########################
  if gtype[0]=='torus':
    k=0
    for j in range(N):
      for i in range(N):
        nnh=[]
        ##########################
        if i<(N-1):
            nnh.append(k+1)

        if i==(N-1):
            nnh.append(k-(N-1))

        if i>0:
            nnh.append(k-1)

        if i==0:
            nnh.append(k+(N-1))
        ###########################
        if j>0:
            nnh.append(k-N)

        if j==0:
            nnh.append(k+(N-1)*N)

        if j<(N-1):
            nnh.append(k+N)

        if j==(N-1):
            nnh.append(k-(N-1)*N)
        ###########################
        A[k]=nnh
        k+=1
##########################
  if gtype[0]=='ring':
    k=0
    for i in range(N):
      nnh=[]
      if i==0:
        nnh.append(i+1)
        nnh.append(N-1)

      if (i>0) and (i<N-1):
        nnh.append(i-1)
        nnh.append(i+1)

      if i==(N-1):
        nnh.append(0)
        nnh.append(i-1)

      A[k]=nnh
      k+=1
#############################
  if gtype[0]=='line':
    k=0
    for i in range(N):
      nnh=[]
      if i==0:
        nnh.append(i+1)
        #nnh.append(N-1)

      if (i>0) and (i<N-1):
        nnh.append(i-1)
        nnh.append(i+1)

      if i==(N-1):
        #nnh.append(0)
        nnh.append(i-1)

      A[k]=nnh
      k+=1

############################
  if gtype[0]=='BarAlb':
    import math
    from pygsl import rng as rn
    print("BaALB!")
    print gtype
    print N
    No=int(math.floor(N/10)) #N>10!
    Nr=No
    SEED=gtype[1]#123456789
    rk=rn.rng()
    rk.set(SEED)
    adjx={}
    for i in range(No):
      nnh=[]
      qs=0
      while qs==0:
        pr=rk.uniform_int(No)
        if pr!=i:
            nnh.append(int(pr))
            qs=1
      adjx[i]=nnh

    for i in adjx.keys():
      nnh=[]
      nnh.append(adjx[i][0])
      for j in adjx.keys():
        if i!=j:
          if adjx[j][0]==i:
            nnh.append(j)
      A[i]=nnh

    m=int(math.floor(No/2)) #N>10!
    Nr=len(A.keys())
    #print Nr, m
    while Nr<=N:
      cnt=0
      zn=0.0
      for i in A.keys():
        zn+=len(A[i])
      nnh=[]
      while cnt<=m:
        qi=zn*rk.uniform_pos()
        sx=0.0
        for ik in A.keys():
          sx+=len(A[ik])
          if (sx>=qi) and ik not in nnh:
            nnh.append(ik)
            cnt+=1
            break
      A[Nr]=nnh
      for i in nnh:
        A[i].append(Nr)
      Nr+=1
    #print Nr, N
############################
  if gtype[0]=='hubs':
    M=gtype[1]
    Adj={}
    k=0

    for i in range(N):
      nnh=[]
      if i==0:
        for j in range(1,N):
            nnh.append(j)
      if i>0:
        nnh.append(0)
      Adj[k]=nnh
      k+=1

    Bj={}
    kx=0
    for j in range(M):
      if j==0:
        for n in range(N):
            Bj[kx]=Adj[n]
            kx+=1
      if j>0:
        for n in range(N):
            kz=kx-(j*(len(Adj.keys())))
            #print kx,kz,j*N
            nnh=[]
            if kz==0:
                for jx in range(1,N):
                    nnh.append(jx+j*(N))
            if kz>0:
                nnh.append(j*N)
            Bj[kx]=nnh
            kx+=1

    z=[]
    for j in range(M):
      z.append(j*N)
      #print z

    for rj in z:
      for rk in z:
        if (rk not in Bj[rj]) and rk!=rj:
            Bj[rj].append(rk)
    ##print Bj
    for nk in Bj.keys():
      A[nk]=Bj[nk]

############################
  if gtype[0]=="fully":
    for i in range(N):
      nnh=[]
      for j in range(N):
        if j != i:
          nnh.append(j)
      A[i]=nnh
############################
  return A
コード例 #9
0
ファイル: histogram2.py プロジェクト: juhnowski/FishingRod
from pygsl import histogram, rng
import pygsl
import sys
from time import clock
from matplotlib import pylab

pygsl.set_debug_level(0)
n = 2000
m = 5000
h =histogram.histogram(n)
h.set_ranges_uniform(-8,8.)
r = rng.rng()

t0 = clock()
h.increment(r.gaussian(1,n*m))
t1 = clock()
print "Needed %d seconds" % (t1 - t0)
x, d = h.plot_data()
x = (x[:,0]+x[:,1])/2
pylab.plot(x,d)
pylab.show()
コード例 #10
0
def job(PT,SEED,nte,neff,tn,RXCLRPTS,CRKPTS,TES):
  from math import floor
  from pygsl import rng as rn
  import sys
  sys.path.append('../LNKMODEL/')
  import Lf
  Np=PT[0]
  m1=PT[1] #hgt effs
  m2=PT[2] #hgt te
  m3=PT[3] #eff recomb
  m4=PT[4] #te dup
  m5=PT[5] #eff dup+te
  m6=PT[6]  #eff->null
  m7=PT[7] #null ->0
  m8=PT[8]  ##eff->0
  beta1=PT[9]
  beta2=PT[10]

  #print("parameter vector:"% PT)
  av1=0.5*(RXCLRPTS[2]-RXCLRPTS[1])
  av2=0.5*(CRKPTS[2]-CRKPTS[1])
  av3=0.5*(TES[2]-TES[1])
  Lth=floor((RXCLRPTS[0]+CRKPTS[0]+TES[0])*(1.0/3.0)*(av1+av2+av3))
  #print Lth
  MU=[Np,m1,m2,m3,m4,m5,m6,m7,m8,Lth,beta1,beta2]

  #SEED=987654320
  rk=rn.rng()
  rk.set(SEED)

################
  gen={}
  trs={}
#  nte=10
#  neff=10
  gen=Lf.inigenome(nte,neff,rk,[TES[1],TES[2]],[CRKPTS[1], RXCLRPTS[2]])
################
  Ntot=RXCLRPTS[0]+CRKPTS[0]+TES[0]
  pqr={}
  ltn=[]
  lth=[]
  ngt=[]
  flg='all-good'
  for nk in range(tn):#Ntot):
    trs=Lf.trates(gen,MU)
    rij,sr =Lf.montec(trs,rk)
    if sr!='TRUE':
      pqr[nk]=[rij[0],rij[1],gen]
      ltn.append(Lf.lent(gen))
      lth.append(Lth)
      ngt.append(len(gen.keys()))
      gu={}
      gu=Lf.transform(rij,gen,rk,[TES[1],TES[2]],[CRKPTS[1], RXCLRPTS[2]])
      gen={}
      for i in gu.keys():
        gen[i]=gu[i]
    else:
      flg='sumzero'
      break

    if len(gen.keys())>2000:
      flg='limit-reached'
      break

  #print("JOB COMPLETED")
  #print flg
  return [lth,ltn,ngt,pqr,gen,flg]
コード例 #11
0
def run(gsl_example = True):
    n = 1000
    p = 2

    # Input data
    #rng.env_setup()
    r = rng.rng()

    # Initalising the data ... the call sequence to the random generator
    # influences the result.
    # Well a really ill conditioned example
    if gsl_example:
        # Initalise it GSL' style. The random generator is called
        # sequentially for each vector. 
        X = np.zeros((n,p), np.float_)
        y = np.zeros((n,), np.float_)
        for i in range(n):
            ui = 5 * r.gaussian(1.0)
            vi = ui + r.gaussian(0.001)
            yi = ui + vi + r.gaussian(1.0)
            X[i,0] = ui
            X[i,1] = vi
            y[i] = yi
    else:
        # That's a more pythonic style. Call it sequentially for one vector
        # and then for the next. The results are then slightly different from
        # the example. But regularisation gives suprisiningly good results
        u = 5 * r.gaussian(1.0, n)
        v = u + r.gaussian(0.001, n)
        y = u + v + r.gaussian(1.0, n)
        X = np.array((u,v), order="F").transpose()

    # Fit
    w = multifit.multifit(n, p)
    w.svd(X)
    rcond = w.rcond()
    print("marix condition number %e" %(1.0/rcond,) )

    c, rnorm, snorm = w.solve(0.0, X, y)
    chisq = rnorm**2

    print("=== Unregularized fit ===")
    print("best fit: y = %g u + %g v" % tuple(c))
    print("residual norm = %g" %(rnorm,));
    print("solution norm = %g" %(snorm,));
    print("chisq/dof = %g" %( chisq / (n - p),));


    # Reqularisation lcurve
    n_points = 200
    reg_param, rho, eta = w.lcurve(y, n_points)
    reg_idx = multifit.lcorner(rho, eta)
    lambda_l = reg_param[reg_idx]

    c_lcurve, rnorm, snorm = w.solve(lambda_l, X, y)
    chisq = rnorm**2 + (lambda_l * snorm)**2
    print("\n=== Regularized fit (L-curve) ===")
    print("optimal lambda: %g" %(lambda_l,))
    print("best fit: y = %g u + %g v" % tuple(c_lcurve))
    print("residual norm = %g" %(rnorm,));
    print("solution norm = %g" %(snorm,));
    print("chisq/dof = %g" %( chisq / (n - p),));

    # GCV
    G, lambda_gcv, G_gcv = w.gcv(y, reg_param)
    c_gcv, rnorm, snorm = w.solve(lambda_gcv, X, y)
    chisq = rnorm**2 + (lambda_gcv * snorm)**2
    print("\n=== Regularized fit (GCV) ===")
    print("optimal lambda: %g" %(lambda_gcv,))
    print("best fit: y = %g u + %g v" % tuple(c_gcv))
    print("residual norm = %g" %(rnorm,));
    print("solution norm = %g" %(snorm,));
    print("chisq/dof = %g" %( chisq / (n - p),));

    return reg_param, rho, eta, G, reg_idx, lambda_gcv, G_gcv
    pass
コード例 #12
0
ファイル: histogram2.py プロジェクト: pygsl/pygsl
from pygsl import histogram, rng
import pygsl
import sys
from time import clock
from matplotlib import pylab

pygsl.set_debug_level(0)
n = 2000
m = 5000
h = histogram.histogram(n)
h.set_ranges_uniform(-8, 8.)
r = rng.rng()

t0 = clock()
h.increment(r.gaussian(1, n * m))
t1 = clock()
print "Needed %d seconds" % (t1 - t0)
x, d = h.plot_data()
x = (x[:, 0] + x[:, 1]) / 2
pylab.plot(x, d)
pylab.show()