def setup_class(cls): cls.fpath = input_dir / 'ecSecB_apo.csv' data = read_dynamx(cls.fpath) control = ('Full deuteration control', 0.167*60) cls.temperature, cls.pH = 273.15 + 30, 8. pf = PeptideMasterTable(data, drop_first=1, ignore_prolines=True, remove_nan=False) pf.set_control(control) cls.hdxm = HDXMeasurement(pf.get_state('SecB WT apo'), temperature=cls.temperature, pH=cls.pH) initial_rates = csv_to_dataframe(output_dir / 'ecSecB_guess.csv') gibbs_guess = cls.hdxm.guess_deltaG(initial_rates['rate']) cls.fit_result = fit_gibbs_global(cls.hdxm, gibbs_guess, epochs=100, r1=2)
from pyhdx.fitting import fit_gibbs_global_batch from pyhdx.fitting_torch import CheckPoint from pyhdx.models import PeptideMasterTable, HDXMeasurement, HDXMeasurementSet current_dir = Path(__file__).parent #current_dir = Path().cwd() / 'templates' # pycharm scientific compat output_dir = current_dir / 'output' output_dir.mkdir(exist_ok=True) data_dir = current_dir.parent / 'tests' / 'test_data' data = read_dynamx(data_dir / 'input' / 'ecSecB_apo.csv', data_dir / 'input' / 'ecSecB_dimer.csv') pmt = PeptideMasterTable(data) pmt.set_control(('Full deuteration control', 0.167*60)) st1 = HDXMeasurement(pmt.get_state('SecB his dimer apo'), pH=8, temperature=273.15 + 30) st2 = HDXMeasurement(pmt.get_state('SecB WT apo'), pH=8, temperature=273.15 + 30) hdx_set = HDXMeasurementSet([st1, st2]) guess = csv_to_protein(data_dir / 'output' / 'ecSecB_guess.csv') gibbs_guess = hdx_set[0].guess_deltaG(guess['rate']) # Example fit with only 5000 epochs and high learning rate # Checkpoint stores model history every `epoch_step` epochs checkpoint = CheckPoint(epoch_step=250) result = fit_gibbs_global_batch(hdx_set, gibbs_guess, r1=0.5, r2=0.1, epochs=5000, lr=1e5, callbacks=[checkpoint]) print(f"MSE loss: {result.mse_loss:.2f}, " f"Reg loss: {result.reg_loss:.2f}, " f"Reg percent: {result.regularization_percentage:.0f}%")
def load_from_yaml(yaml_dict, data_dir=None, **kwargs): #name: load what from yaml? #todo perhas classmethod on HDXMeasurement object? """ Creates a :class:`~pyhdx.models.HDXMeasurement` object from dictionary input. Dictionary can be generated from .yaml format and should specify Parameters ---------- yaml_dict : :obj:`dict` Input dictionary specifying metadata and file location to load data_dir : :obj:`str` or pathlib.Path object Returns ------- hdxm : :class:`~pyhdx.models.HDXMeasurement` Output data object as specified by `yaml_dict`. """ if data_dir is not None: input_files = [ Path(data_dir) / fname for fname in yaml_dict['filenames'] ] else: input_files = yaml_dict['filenames'] data = read_dynamx(*input_files) pmt = PeptideMasterTable(data, d_percentage=yaml_dict['d_percentage'] ) #todo add proline, n_term options if 'control' in yaml_dict.keys( ): # Use a FD control for back exchange correction pmt.set_control(tuple(yaml_dict['control'])) elif 'be_percent' in yaml_dict.keys( ): # Flat back exchange percentage for all peptides\ pmt.set_backexchange(yaml_dict['be_percent']) else: raise ValueError('No valid back exchange control method specified') if yaml_dict['temperature_unit'].lower() == 'celsius': temperature = yaml_dict['temperature'] + 273.15 elif yaml_dict['temperature_unit'].lower() == 'kelvin': temperature = yaml_dict['temperature'] else: raise ValueError( "Invalid option for 'temperature_unit', must be 'Celsius' or 'Kelvin'" ) sequence = yaml_dict.get('sequence', '') c_term = yaml_dict.get('c_term', 0) n_term = yaml_dict.get('n_term', 1) if not (c_term or sequence): raise ValueError("Must specify either 'c_term' or 'sequence'") state_data = pmt.get_state([yaml_dict['series_name']]) hdxm = HDXMeasurement(state_data, temperature=temperature, pH=yaml_dict['pH'], sequence=sequence, n_term=n_term, c_term=c_term, **kwargs) return hdxm
np.random.seed(43) data_dir = current_dir.parent / 'tests' / 'test_data' data = read_dynamx(data_dir / 'ecSecB_apo.csv', data_dir / 'ecSecB_dimer.csv') pmt = PeptideMasterTable(data) pmt.set_control(('Full deuteration control', 0.167)) names = ['SecB his dimer apo', 'SecB WT apo'] data_objs = [] for name in names: data = pmt.get_state(name) bools = data['end'] < 40 selected_data = data[bools] st = HDXMeasurement(selected_data) #st = HDXMeasurement(data) data_objs.append(st) if __name__ == '__main__': client = default_client() futures = client.map(fit_rates_weighted_average, data_objs, client='worker_client') print(futures) def future_done(future): print('joohoehoeho', future)
def load_from_yaml_v040b2(yaml_dict, data_dir=None, **kwargs): # pragma: no cover """ This is the legacy version to load yaml files of PyHDX v0.4.0b2 Creates a :class:`~pyhdx.models.HDXMeasurement` object from dictionary input. Dictionary can be generated from .yaml format. See templates/yaml_files/SecB.yaml for format specification. Parameters ---------- yaml_dict : :obj:`dict` Input dictionary specifying experimental metadata and file location to load data_dir : :obj:`str` or pathlib.Path object Returns ------- hdxm : :class:`~pyhdx.models.HDXMeasurement` Output data object as specified by `yaml_dict`. """ if data_dir is not None: input_files = [ Path(data_dir) / fname for fname in yaml_dict["filenames"] ] else: input_files = yaml_dict["filenames"] data = read_dynamx(*input_files) pmt = PeptideMasterTable(data, d_percentage=yaml_dict["d_percentage"] ) # todo add proline, n_term options if "control" in yaml_dict.keys( ): # Use a FD control for back exchange correction pmt.set_control(tuple(yaml_dict["control"])) elif ("be_percent" in yaml_dict.keys() ): # Flat back exchange percentage for all peptides\ pmt.set_backexchange(yaml_dict["be_percent"]) else: raise ValueError("No valid back exchange control method specified") if yaml_dict["temperature_unit"].lower() == "celsius": temperature = yaml_dict["temperature"] + 273.15 elif yaml_dict["temperature_unit"].lower() == "kelvin": temperature = yaml_dict["temperature"] else: raise ValueError( "Invalid option for 'temperature_unit', must be 'Celsius' or 'Kelvin'" ) sequence = yaml_dict.get("sequence", "") c_term = yaml_dict.get("c_term", 0) n_term = yaml_dict.get("n_term", 1) if not (c_term or sequence): raise ValueError("Must specify either 'c_term' or 'sequence'") state_data = pmt.get_state([yaml_dict["series_name"]]) hdxm = HDXMeasurement(state_data, temperature=temperature, pH=yaml_dict["pH"], sequence=sequence, n_term=n_term, c_term=c_term, **kwargs) return hdxm
def yaml_to_hdxm(yaml_dict, data_dir=None, data_filters=None, **kwargs): # todo perhas classmethod on HDXMeasurement object? """ Creates a :class:`~pyhdx.models.HDXMeasurement` object from dictionary input. Dictionary can be generated from .yaml format. See templates/yaml_files/SecB.yaml for format specification. Parameters ---------- yaml_dict : :obj:`dict` Input dictionary specifying experimental metadata and file location to load data_dir : :obj:`str` or pathlib.Path object Returns ------- hdxm : :class:`~pyhdx.models.HDXMeasurement` Output data object as specified by `yaml_dict`. """ if data_dir is not None: input_files = [ Path(data_dir) / fname for fname in yaml_dict["filenames"] ] else: input_files = yaml_dict["filenames"] data = read_dynamx(*input_files) pmt = PeptideMasterTable(data, drop_first=yaml_dict.get('drop_first', 1), d_percentage=yaml_dict['d_percentage'] ) #todo add proline, n_term options if 'control' in yaml_dict.keys( ): # Use a FD control for back exchange correction # todo control should be set from an external file control_state = yaml_dict["control"]["state"] exposure_value = yaml_dict["control"]["exposure"]["value"] exposure_units = yaml_dict["control"]["exposure"]["unit"] control_exposure = exposure_value * time_factors[exposure_units] pmt.set_control((control_state, control_exposure)) elif ("be_percent" in yaml_dict.keys() ): # Flat back exchange percentage for all peptides\ pmt.set_backexchange(yaml_dict["be_percent"]) else: raise ValueError("No valid back exchange control method specified") temperature = yaml_dict["temperature"]["value"] try: t_offset = temperature_offsets[yaml_dict["temperature"]["unit"]] except KeyError: t_offset = temperature_offsets[yaml_dict["temperature"] ["unit"].lower()] temperature += t_offset sequence = yaml_dict.get("sequence", "") c_term = yaml_dict.get("c_term") n_term = yaml_dict.get("n_term") or 1 if not (c_term or sequence): raise ValueError("Must specify either 'c_term' or 'sequence'") state_data = pmt.get_state(yaml_dict["state"]) data_filters = data_filters or [] for filter in data_filters: state_data = filter(state_data) hdxm = HDXMeasurement(state_data, temperature=temperature, pH=yaml_dict["pH"], sequence=sequence, n_term=n_term, c_term=c_term, **kwargs) return hdxm