def test_01(self): if os.path.exists('./experiments_data') is False: os.mkdir('./experiments_data') if os.path.exists('./datasets/image') is False: z = zipfile.ZipFile("./datasets/image.zip", "r") seq_x = [] label_y = [] for filename in z.namelist(): z.extract(filename, './datasets') cur_dataset = expdata_generator(self.expdata_id) cur_dataset.get_exp_data(sel_task='diagnose', data_root='./datasets/image')
def test_02_rf(self): cur_dataset = expdata_generator(self.expdata_id) cur_dataset.load_exp_data() expmodel_id = 'test.randomforest' clf = RandomForest(expmodel_id=expmodel_id) clf.fit(cur_dataset.train, cur_dataset.valid) clf.load_model() clf.inference(cur_dataset.test) pred_results = clf.get_results() assert np.shape(pred_results['hat_y']) == np.shape(pred_results['y']) assert True not in np.isnan(pred_results['hat_y']).tolist() assert True not in np.isnan(pred_results['hat_y'] * 0).tolist()
def test_02_basiccnn_gpu(self): cur_dataset = expdata_generator(self.expdata_id) cur_dataset.load_exp_data() expmodel_id = 'test.basicnn.gpu' clf = BasicCNN(expmodel_id=expmodel_id, n_batchsize=20, use_gpu=True, n_epoch=6) clf.fit(cur_dataset.train, cur_dataset.valid) clf.load_model() clf.inference(cur_dataset.test) pred_results = clf.get_results() assert np.shape(pred_results['hat_y']) == np.shape(pred_results['y']) assert True not in np.isnan(pred_results['hat_y']).tolist() assert True not in np.isnan(pred_results['hat_y'] * 0).tolist()
def test_02_dblstm_ws_cpu(self): cur_dataset = expdata_generator(self.expdata_id) cur_dataset.load_exp_data() expmodel_id = 'test.dblstm_ws.cpu' clf = DBLSTM_WS(expmodel_id=expmodel_id, n_batchsize=20, use_gpu=False, n_epoch=3) clf.fit(cur_dataset.train, cur_dataset.valid) clf.load_model() clf.inference(cur_dataset.test) pred_results = clf.get_results() assert np.shape(pred_results['hat_y']) == np.shape(pred_results['y']) assert True not in np.isnan(pred_results['hat_y']).tolist() assert True not in np.isnan(pred_results['hat_y'] * 0).tolist()
def test_02_typicalcnn_gpu(self): cur_dataset = expdata_generator(self.expdata_id) cur_dataset.load_exp_data() expmodel_id = 'test.typicalcnn' clf = TypicalCNN(expmodel_id=expmodel_id, cnn_name='resnet18', n_batchsize=20, use_gpu=False, n_epoch=6) clf.fit(cur_dataset.train, cur_dataset.valid) clf.load_model() clf.inference(cur_dataset.test) pred_results = clf.get_results() assert np.shape(pred_results['hat_y']) == np.shape(pred_results['y']) assert True not in np.isnan(pred_results['hat_y']).tolist() assert True not in np.isnan(pred_results['hat_y'] * 0).tolist()
#from pyhealth.models.ecg.dblstm_ws import DBLSTM_WS as model #from pyhealth.models.ecg.denseconv import DenseConv as model #from pyhealth.models.ecg.deepres1d import DeepRES1D as model #from pyhealth.models.ecg.sdaelstm import SDAELSTM as model #from pyhealth.models.ecg.mina import MINA as model #from pyhealth.models.ecg.rcrnet import RCRNet as model #from pyhealth.models.ecg.rf import RandomForest as model #from pyhealth.models.ecg.xgboost import XGBoost as model from pyhealth.evaluation.evaluator import func data_dir = os.path.join(root_dir, 'datasets', 'ecg') expdata_id = '2020.1104.data.diagnose.ecg' # set up the datasets cur_dataset = expdata_generator(expdata_id, root_dir=root_dir) cur_dataset.get_exp_data(sel_task='diagnose', data_root=data_dir) cur_dataset.load_exp_data() cur_dataset.show_data() # initialize the model for training expmodel_id = '2020.1104.ecg.diagnose.' clf = model(expmodel_id=expmodel_id, n_epoch=10, use_gpu=True) clf.fit(cur_dataset.train, cur_dataset.valid) # load the best model for inference clf.load_model() clf.inference(cur_dataset.test) results = clf.get_results() print(results)