コード例 #1
0
def test_main():
    text = """
    A = True
    B = Random
    C = Random
    D = Random

    B* = A or C
    C* = A and not D
    D* = B and C
    """

    repeat = 5000

    coll = util.Collector()
    for i in range(repeat):
        update_progress(i, repeat)
        model = boolean2.Model(text, mode='async')
        model.initialize()
        model.iterate(steps=15)
        # in this case we take all nodes
        # one could just list a few nodes such as [ 'A', 'B', 'C' ]
        nodes = model.nodes
        # this collects states for each run
        coll.collect(states=model.states, nodes=nodes)

    # this step averages the values for each node
    # returns a dictionary keyed by nodes and a list of values
    # with the average state for in each timestep
    avgs = coll.get_averages(normalize=True)

    # make some shortcut to data to for easier plotting
    valueB = avgs["B"]
    valueC = avgs["C"]
    valueD = avgs["D"]

    #
    # plot the state of the nodes
    #
    p1, = plt.plot(valueB, 'ob-')
    p2, = plt.plot(valueC, 'sr-')
    p3, = plt.plot(valueD, '^g-')
    plt.legend([p1, p2, p3], ["B", "C", "D"])

    plt.show()

    plt.savefig('t-05_figure.png')
コード例 #2
0
def run(text, nodes, repeat, steps):
    """
    Runs the simulation and collects the nodes into a collector, 
    a convenience class that can average the values that it collects.
    """
    coll = util.Collector()

    for i in xrange(repeat):
        engine = Model(mode='async', text=text)
        engine.RULE_GETVALUE = new_getvalue
        # minimalist initial conditions, missing nodes set to false
        engine.initialize(missing=util.false)
        engine.iterate(steps=steps)
        coll.collect(states=engine.states, nodes=nodes)

    print '- completed'
    avgs = coll.get_averages(normalize=True)
    return avgs